Proposition 7.1.12: Properties of the Riemann Integral
Suppose f and g are Riemann integrable functions
defined on [a, b]. Then
c f(x) + d g(x) dx = c
f(x) dx + d
g(x) dx
- If a < c < b then
f(x) dx =
f(x) dx +
f(x) dx
- |
f(x) dx |
| f(x) | dx
- If g is another function defined on
[a, b] such that g(x) < f(x) on
[a, b], then
g(x) dx
f(x) dx
- If g is another Riemann integrable function on [a, b] then f(x) . g(x) is integrable on [a, b]