Panel 1

Review (and Correction)

If \(f(t,t) \) is a function, \(y(t) = \langle x(t), y(t) \rangle \) a curve

Then

\[
\begin{align*}
\int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} \, dt & = \int_0^1 \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt \\
\int_0^1 f(x(t), y(t)) \, dt & = \int_0^1 y(t) \, dt \\
\end{align*}
\]

If \(\mathbf{F} = \langle M, N \rangle \),

\[
\int_0^1 \mathbf{F} \cdot d\mathbf{r} = \int_0^1 M \, dx + N \, dy
\]

\(\mathbf{r} = \langle dx, dy \rangle \)

Panel 2

Let \(f(x,y) = x^2 - xy + y^2 \), \(F(x,y) = \langle 2x - y, 2y - x \rangle \), \(D = \{(x,y) : x^2 + y^2 \leq 1\} \), \(C = \{(x,y) : x^2 + y^2 = 1, y \geq 0\} \), \(\gamma_1(t) = \langle t, 0 \rangle, \ t \in [-1,1], \) and \(\gamma_2(t) = \langle t, \sin(\pi t) \rangle, \ t \in [-1,1]. \)

1. Sketch each object

\(\mathbf{F} \cdot \mathbf{n} = 2x^2 - 2xy + 2y^2 \) is surface in \(\mathbb{R}^3 \)

\(\text{plot3d}(x^2 - xy + y^2, x = -4..4, y = -4..4) \)

\(\mathbf{F}(x,y) = \langle 2x - y, 2y - x \rangle \) is vector field in \(\mathbb{R}^2 \)

\(\text{fieldplot}(2x - y, 2y - x, x = -3..3, y = -3..3) \)

\(D = \{(x,y) : x^2 + y^2 \leq 1\} \) set in \(\mathbb{R}^2 \)

No Maple \(\cap \) inside unit circle

\(C = \{(x,y) : x^2 + y^2 = 1, y \geq 0\} \) curve in \(\mathbb{R}^2 \)

\(\text{implicitplot}(x^2 + y^2 = 1, x = -2..2, y = -2..2) \)

\(\cap \) circle
Panel 3

Let \(f(x, y) = x^2 - xy + y^2 \), \(F(x, y) = \langle 2x - y, 2y - x \rangle \), \(D = \{(x, y) : x^2 + y^2 \leq 1\} \),
\(C = \{(x, y) : x^2 + y^2 = 1, y \geq 0\} \), \(\gamma_1(t) = \langle t, 0 \rangle \), \(t \in [-1, 1] \), and \(\gamma_2(t) = \langle t, \sin(\pi t) \rangle \), \(t \in [-1, 1] \).

1. Sketch each object

\[\mathbf{T}_1(t) = \langle t, 0 \rangle, \quad t \in [-1, 1] \] (parametrized curve, incl. \(\mathbf{d} \))

\[\mathbf{T}_2(t) = \langle t, \sin(t) \rangle, \quad t \in [-1, 1] \] (parametrized curve with \(\mathbf{d} \))

\[\text{plot}([t, \sin(t), t = -1..1]); \]

Panel 4

Let \(f(x, y) = x^2 - xy + y^2 \), \(F(x, y) = \langle 2x - y, 2y - x \rangle \), \(D = \{(x, y) : x^2 + y^2 \leq 1\} \),
\(C = \{(x, y) : x^2 + y^2 = 1, y \geq 0\} \), \(\gamma_1(t) = \langle t, 0 \rangle \), \(t \in [-1, 1] \), and \(\gamma_2(t) = \langle t, \sin(\pi t) \rangle \), \(t \in [-1, 1] \).

a) \[\int_C f(x, y)\, ds \] or \(\int_C f(x, y)\, ds \)

b) \[\int_D f(x, y)\, ds \]

c) \[\int_C f(x, y)\, ds = \int_{\gamma_1(t)} \left(x - y \right)\, ds = \int_{\gamma_2(t)} \left(x - y \right)\, ds \]

d) \[\int_C f(x, y)\, dx \quad \int_C f(x, y)\, dy \]

\[\int_C f(x, y)\, ds = \int_{\gamma_1(t)} \left(x^2 - y^2 \right)\, ds = \int_{\gamma_2(t)} \left(x^2 - y^2 \right)\, ds \]

i) \[\int_C f(x, y)\, dr \]

j) \[\int_C f(x, y)\, dr \]

k) \[\int_C f(x, y)\, dr \]

\[\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle, \quad t \in [0, \pi] \]

\[\int_C f(x, y)\, ds = \int_{\gamma_1(t)} \langle x, y \rangle\, ds = \int_{\gamma_2(t)} \langle x, y \rangle\, ds \]

\[\int_{D_1} (x^2 - y^2)\, dx + \int_{D_2} (x^2 - y^2)\, dy \]

\[\int_{D_1} \langle \cos(t), \sin(t) \rangle\, dt = \int_{D_2} \langle \cos(t), \sin(t) \rangle\, dt \]

Page 2 of 15
Panel 5

\[f(x, y) = x^2 - xy + y^2 \Rightarrow \frac{\partial f}{\partial y} = -x \]
\[= \frac{\partial f}{\partial x} = 2x \Rightarrow (0, 0), \frac{\partial f}{\partial x} \in \mathbb{C} \]

\[\int_{Y_1} f(x, y) \, dx = \int_{Y_1} x^2 - xy + y^2 \, dx = \int_{-1}^{1} x^2 \, dx = \frac{1}{3} x^3 \bigg|_{-1}^{1} = \frac{2}{3} \]

\[\int_{Y_2} f(x, y) \, dy = \int_{Y_2} (t^2 + \sin(t) + \sin^2(t)) \, dy \bigg|_{-1}^{1} = \]
\[= \int_{-1}^{1} (t^2 + \sin(t) + \sin^2(t)) \cos(t) \, dt \]

Panel 6

Note: \[\int_{C} \vec{F} \cdot d\vec{\ell} \] is important because it gives "work".

Because it gives "work".

Work of moving something around path \(C \) in a field \(\vec{F} \).

Need \[\int_{C} \vec{F} \cdot d\vec{\ell} \] shortcut
Panel 7

Fundamental Theorem for Line Integrals

\[\int_{\gamma} F \cdot dr = \int_{a}^{b} f(b) - f(a) \]

If \(F \) is conservative with potential function \(f \), and \(\gamma(t) \), \(a \leq t \leq b \), a smooth curve. Then:

\[\int_{\gamma} F \cdot dr = f(b) - f(a) \]

Potential at end and potential at start.

How to tell: \(F(x,y) = (M,N) \) conservative?

\(F \) is conservative if \(\nabla \cdot F = \sum_{i=1}^{2} \left(\frac{\partial F_i}{\partial x_i} \right) \), i.e.

\[M_x = N_y \quad \text{and} \quad N_x = M_y \]

Conservative if \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \)

Panel 8

Which of the following vector fields is not conservative:

(a) \(F(x,y) = (x,y) \) conservative

(b) \(F(x,y) = (x^2 + y^2, 2xy) \) conservative

(c) \(F(x,y) = (e^x \cos(y), -e^x \sin(y)) \)

\(\frac{\partial}{\partial y} (e^x \cos(y)) = e^x \cos(y) \)

\(\frac{\partial}{\partial x} (e^x \sin(y)) = e^x \sin(y) \)

Not conservative.

(d) \(F(x,y) = (x^2 \cos(y), -y^2 \sin(x)) \)

\(\frac{\partial}{\partial x} (x^2 \cos(y)) = 2x \cos(y) \)

\(\frac{\partial}{\partial y} (x^2 \cos(y)) = -x^2 \sin(y) \)

Conservative:

\(\frac{\partial}{\partial y} (x^2 \cos(y)) = \frac{\partial}{\partial x} (-y^2 \sin(x)) \)

\(\frac{\partial}{\partial x} (y^2 \sin(x)) = \frac{\partial}{\partial y} (-y^2 \sin(x)) \)

\(\frac{\partial}{\partial y} (x^2 \cos(y)) = -x^2 \sin(y) \)

\(\frac{\partial}{\partial x} (-y^2 \sin(x)) = -y^2 \cos(x) \)
Panel 9

Find \(\int \nabla \cdot \mathbf{F} \, d\mathbf{r} \) where \(\mathbf{F}(x,y) = (x^2 + y^2, 2xy) \)

\(\Gamma_1 \) and \(\Gamma_2 = \)

\[\int_{\Gamma_1} \nabla \cdot \mathbf{F} \, d\mathbf{r} \]

\[\int_{\Gamma_2} \nabla \cdot \mathbf{F} \, d\mathbf{r} \]

Old way:

\[\int_{\Gamma_1} \mathbf{F} \cdot d\mathbf{r} = \int \left(x^2 + y^2, 2xy \right) \, (dx, dy) = \]

\[\Gamma_1: \cos(t), \sin(t) \]

\[= \int_0^\pi \left[\cos^2(t) + \sin^2(t) \right] \, dt + \int_0^\pi 2\cos(t)\sin(t) \, dt \]

New way:

use Maple

\[\int_0^\pi \left[-\sin(t) \, dt + \int 2\sin(t) \cos^2(t) \, dt \right] = \frac{\pi}{2} \]

Panel 10

\[\int_{\Gamma_2} \mathbf{F} \cdot d\mathbf{r} = \int x^2 + y^2 \, dx + 2xy \, dy = \int (-2t) \, dt = \int_0^1 \left[\cos^2(t) + \sin^2(t) \right] \, dt + \int_0^\pi 2\cos(t)\sin(t) \, dt \]

New way:

Is \(\mathbf{F}(x,y) = (x^2 + y^2, 2xy) \) conservative?

Potential function is \(f(x,y) = \frac{1}{2}x^2 + xy \) (I guessed)

Now:

\[\int_{\Gamma_2} \mathbf{F} \cdot d\mathbf{r} = f(\text{end}) - f(\text{start}) = \]

\[= f(1,0) - f(1,0) = \]

\[= -\frac{1}{2} - \frac{1}{2} = -\frac{2}{2} = -1 \]
Panel 11

Consequences of Fundamental Theorem for Line Integrals

Path Independence: If C_1 is a curve from A to B, and C_2 is another curve from A to B, and if \vec{F} is a conservative vector field, then

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r},$$

i.e.

Line integral is independent of curve from A to B.

Panel 12

Ex: Find work done by gravitational field

$$\vec{F}(\vec{r}) = -\frac{mG \vec{r}}{\|\vec{r}\|^3}$$

moving particle from $(3,4,12)$ to $(2,2,0)$.

$$\vec{F}(3,4,12) = -\frac{mG(3,4,12)}{\|(3,4,12)\|^3}$$

is conservative

with potential function

$$-mG \left(\frac{1}{(3,4,12)} - \frac{1}{(2,2,0)}\right) = f$$

$$\int_{(3,4,12)}^{(2,2,0)} \vec{F} \cdot d\vec{r} = f(2,2,0) - f(3,4,12) = mG \left[\frac{1}{8} - \frac{1}{\sqrt{97}}\right]$$

Only makes sense if \vec{F} is conservative!
Corollary 2: If \(\mathbf{F} \) is conservative and \(C \) is a closed curve, then \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \).

Note: if \(C \) is closed we write \(\oint_C \mathbf{F} \cdot d\mathbf{r} \).

Because \(\mathbf{F} \) conserv., closed curve has some
same

\(f \), \textit{finish physics}

\[\left\{ \begin{array}{l}
\int_C \mathbf{F} \cdot d\mathbf{r} = f(\text{end}) - f(\text{start}) = 0 \\
\text{same}
\end{array} \right. \]

How to find a Potential Function

\(\mathbf{F}(x,y) = \langle M, N \rangle \) a vector field.

Wanted: \(f(x,y) \) s.t. \(\nabla f = \mathbf{F} \) (if \(\frac{\partial N}{\partial y} = \frac{\partial M}{\partial x} \)).

1. \(f_x = M \Rightarrow f = \int M \, dx \) (anti-deriv. with \(x \))

 \(f \) will include a function of \(y \), \(C(y) \).

2. Use \(f \) in 1 and compute \(f_y \). Compare

 \(f_y = \ldots \Rightarrow C'(y) = N \).

3. Solve equation 2 for \(C(y) \) by integration

4. Check your answer
Find potential function for $f = \left(\begin{array}{c} 3x + 2xy \vspace{.1cm} \\
3 + 3y^2 \end{array} \right)$ if exists

Panel 15

1. \(f_x = 3 + 2xy \) \hspace{.5cm} f = \int 3 + 2xy \, dx = 3x + x^2y + C(y) \\
2. \(f_y = x^2 + C'(y) = x^2 - 3y^2 \) \\
 \hspace{.2cm} C'(y) = -3y^2 \\
3. \(C(y) = -y^3 + c \) \\
4. \(f(x,y) = 3x + x^2y - y^3 + C \)

Panel 16

Find potential function for \(\langle x^2 \cos(y), -y^2 \sin(x) \rangle \)

1. \(\frac{\partial}{\partial x} f = x^2 \cos(y) \)
 \hspace{.5cm} f = \int x^2 \cos(y) \, dx = \frac{1}{3} x^3 \cos(y) + C(y) \\
2. \(\frac{\partial}{\partial y} f - f_y = -\frac{1}{3} x^3 \sin(y) + C'(y) = -y^2 \sin(x) \)

\underline{Solve:} \hspace{.2cm} Need \(C'(y) = ___ _ _ _ _ \)

\underline{No potential:} \hspace{.2cm} Always check \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \)
Panel 17

Find potential for \(f = (y^2, 2xy, e^{1z}, 3ye^{2z}) \) if exists.

1. \(f_x = y^2 \Rightarrow f(x,y,z) = xy^2 + C(x, y, z) \)

2. \(f_y = 2xy + C_y = 2xy + e^{2z} \)
 \[\Rightarrow C_y = e^{2z} \]
 \[\Rightarrow C(x, y, z) = ye^{2z} + D(z) \]

3. \(f_z = 3ye^{2z} + 0 = ye^{2z} \quad \Rightarrow D'(z) = 0 \quad \Rightarrow D \) is constant

\[\Rightarrow f(x, y, z) = xy^2 + ye^{2z} + \text{constant} \]

Panel 18

If \(\mathbf{F}(x, y, z) = (H, N, P) \) is conservative then

\[\nabla \cdot \mathbf{F} = (0, 0, 0) \]

\(\Box \): Which of the following vector fields is NOT conservative:

(a) \(\mathbf{F} = \left\langle xy - \sin(x), \frac{1}{2}x^2 - \frac{e^y}{e^x}, e^y \right\rangle \)

(b) \(\mathbf{G} = \left\langle xz, yz, xy \right\rangle \)

(c) \(\mathbf{H} = \left\langle 2xy - z^2, 2ye^x + x^4, y^2 - 2e^x \right\rangle \)
Panel 19

\[G = (x^2, yz, xy) \text{ is conservative if } \text{curl} G = 0 \]

\[
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial & \partial & \partial \\
x^2 & yz & xy
\end{vmatrix}
\]

\[\text{Slop } \Rightarrow \text{ not zero} \]

\[H = (2xy - z^2, 2yz + x^2, y^2 - 2z x) \]

\[
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial & \partial & \partial \\
x^2 & yz & xy
\end{vmatrix}
\]

\[\text{Slop } \Rightarrow \text{ not conserved!} \]

Panel 20

\[\mathbf{F} = \left(xy \sin(z), \frac{e^y}{e^x}, \frac{e^y}{e^x} - x \cos z \right) \]

is conservative?
Panel 21

Summary of Conservative Vector Field

\[\mathbf{F} = \nabla \varphi, \quad \varphi \text{ is potential function} \]

\[\int_C \mathbf{F} \cdot d\mathbf{r} \text{ is independent of path from } A \text{ to } B \]

\[\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \text{ for all closed curves } C \]

(If domain is simply connected) [technical]

\[\text{curl } \mathbf{F} = 0 \iff \nabla \varphi \text{ conservative} \]

Panel 22

Note: Find curl \(\mathbf{F} \) if \(\mathbf{F}(x,y) = \langle M, N \rangle \)

\[\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_x & \partial_y & \partial_z \\
M & N & 0
\end{vmatrix} = \langle 0 - 0, 0 - 0, \frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \rangle
\]

i.e. equin. \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \)
Panel 23

1. Find a conservative vector field that has the given potential:
 \[f(x, y, z) = \sin(x^2 + y^2 + z^2) \]

2. Find \(\nabla \cdot F \) and \(\text{curl}(F) = \nabla \times F \)
 \[F(x, y, z) = x^2z, y^2x, y + 2z \]

3. Evaluate \(\int_C (x - y)dx + xdy \) if \(C \) is the graph of \(y^2 = x \) from \((4, -2)\) to \((4, 2)\)
 \[y(4) = \left(\frac{4^2}{2} \right)^{1/2} \]

4. Find the work done by \(F(x, y, z) \) along the curve \(\langle t, t^2, t^3 \rangle \) from \((0, 0, 0)\) to \((2, 4, 8)\), where
 \[F(x, y, z) = y, z, x \]

 Check which of the following vector fields is not conservative.
 \[F(x, y) = 3x^2y + 2x^3 + 4y^3 >
 F(x, y) = e^x - 3e^x \sin(y) >
 F(x, y, z) = 8xyz, 1 - 6yz^2, 4x^2 - 9y^2z^2 >

 \]

5. Show that the line integrals are independent of the path, and find their value:
 \[\int_{(3,1)}^{(3,2)} (3x^2 + 2y)dx + (x^2 + 2xy)dy = f(3, 1) - f(3, 2) \]
 \[\int_{(1,1)}^{(1,3)} (6x^3 + 2x^2)dx + (9x^2 y^2)dy + (4x + 1)dz \]

 is \(\text{curl}(F) = 0 \)

Panel 24

Find work done by \(F = \langle x^2 + y^2, 2x + y \rangle \) from \((-1, 0)\) to \((0, 1)\)

\[\int_{-1}^{0} \frac{2 - 3}{F} \left(\begin{array}{c} 2x \cr x^2 + y^2 \end{array} \right) \, dx \]

\[\text{Must use this} \]

\[f_{\text{end}} - f_{\text{start}} \]

Next \(\Rightarrow \) \(f \) better be \(\text{conservative} \)

\[F = \langle 3x^2 y + 2, x^3 + 4y^3 \rangle \] find potential:

\[f_x = 3x^2 y + 2 \Rightarrow f = x^3 y + 2x + C(y) \]

\[f_y = x^3 + C'(y) = x^3 + 4y^3 \Rightarrow C'(y) = 4y^3 \]

\[\Rightarrow C(y) = y^4 + c \]

\[c(x, y) = x^3 y + 2x + \frac{y^4}{4} + c \]
Panel 25

\[\int \mathbf{F} \cdot d\mathbf{a} \text{ important because it is work} \]

\[\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} \text{ long way, using curve parametrization} \]

\[\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = f(\beta) - f(\alpha) \text{ if conservative} \]

\[\oint_{\gamma} \mathbf{F} \cdot d\mathbf{r} \text{ other shortcut!} \]

\[\oint_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \oint_{R} \nabla \times \mathbf{F} \cdot d\mathbf{A} \]

Panel 26

Green's Theorem: \(R \) a region in \(xy \)-plane with boundary curve \(C \). \(C \) is piecewise smooth, non-intersecting, closed, and positively oriented. \(\mathbf{F} = (M, N) \) is a smooth vector field. Then

\[\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA \]

Corollary: If \(\mathbf{F} \) is conservative then \(\oint_{C} \mathbf{F} \cdot d\mathbf{r} = 0 \)

already knew that anyway!

either work line integral or double integral

(it curve is closed)
Ex: Evaluate $\oint_C xy \, dx + x^3y \, dy$, where C is as shown.

Try Green's Theorem: curve closed.

$$\oint_C xy \, dx + x^3y \, dy = \iint_R \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) \, dA = \iint_R 3x^2 - 5x \, dy \, dx = \frac{27}{4}$$

Ex: Evaluate $\oint_C 2xy \, dx + (x^2 + y^2) \, dy$, C in $4x^2 + 9y^2 = 36$.

We curve the "long way": need parametrization.

$r(t) = \langle \cos t, \sin t \rangle$

Closed curve - by Green:

$$\oint_C 2xy \, dx + (x^2 + y^2) \, dy = \iint_R \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \, dA = -\iint_{ellipse} 2x - 2x \, dA = 0$$
Coming Attractions:

Slope's + Gauss Thin

+ Review

Tomorrow