Chapter 12. Fast Fourier Transform

integer arithmetic modulo some large prime $N+1$, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:
Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).
Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).
Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].
Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f_j, $j = 0 \ldots N - 1$. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform F_n, $n = 0 \ldots N - 1$
satisfies $F_{N-n}^* = F_n$. Since this complex-valued array has real values for F_0
and $F_{N/2}$, and $(N/2) - 1$ other independent values $F_1 \ldots F_{N/2-1}$, it has the same
$2(N/2 - 1) + 2 = N$ “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.
12.3 FFT of Real Functions, Sine and Cosine Transforms

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform F_n to handle two real functions at once: Since the input data f_j are real, the components of the discrete Fourier transform satisfy

$$F_{N-n} = (F_n)^*$$ \hspace{1cm} (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete Fourier transform of a purely imaginary set of g_j’s has the opposite symmetry.

$$G_{N-n} = -(G_n)^*$$ \hspace{1cm} (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of length N simultaneously by packing the two data arrays as the real and imaginary parts, respectively, of the complex input array of four1. Then the resulting transform array can be unpacked into two complex arrays with the aid of the two symmetries. Routine twofft works out these ideas.

```c
void twofft(float data1[], float data2[], float fft1[], float fft2[], unsigned long n)
{
    unsigned long nn3,nn2,jj,j;
    float rep,rem,aip,aim;
    nn3=1+(nn2=2+n+n);
    for (j=1,jj=2;j<=n;j++,jj+=2) {
        fft1[j-1]=data1[j];
        fft1[j]=data2[j];
    }
    four1(fft1,n,1);
    fft2[1]=fft1[2];
    fft1[2]=fft2[2]=0.0;
    for (j=3;j<=n;n1;j+=2) {
        rep=0.5*(fft1[j]+fft1[nn2-j]);
        rem=0.5*(fft1[j]-fft1[nn2-j]);
        aip=0.5*(fft1[j+1]+fft1[nn3-j]);
        aim=0.5*(fft1[j+1]-fft1[nn3-j]);
        fft1[j]=rep;
        fft1[j+1]=aim;
        fft1[nn2-j]=rep;
        fft1[nn3-j] = -aim;
        fft2[j]=aip;
        fft2[nn2-j]=-rem;
        fft2[nn3-j]=aim;
        fft2[2]=aip;
        fft2[nn3-j]=rem;
    }
}
```

Routine twofft works out these ideas.
What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using four1 with
isign $=-1$. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms, each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numbered
f_j as one data set, and the odd-numbered f_j as the other. The beauty of this is that
we can take the original real array and treat it as a complex array h_j of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking is required. In other words
$h_j = f_{2j} + if_{2j+1}, \ j = 0, \ldots, N/2 - 1$. We submit this to four1, and it will give
back a complex array $H_n = F_n^e + IF_n^o, \ n = 0, \ldots, N/2 - 1$ with

$$
F_n^e = \sum_{k=0}^{N/2-1} f_{2k} e^{2\pi i k n/(N/2)}
$$

$$
F_n^o = \sum_{k=0}^{N/2-1} f_{2k+1} e^{2\pi i k n/(N/2)}
$$

(12.3.3)

The discussion of program twofft tells you how to separate the two transforms
F_n^e and F_n^o out of H_n. How do you work them into the transform F_n of the original
data set f_j? Simply glance back at equation (12.2.3):

$$
F_n = F_n^e + e^{2\pi in/N} F_n^o \quad n = 0, \ldots, N - 1
$$

(12.3.4)

Expressed directly in terms of the transform H_n of our real (masquerading as
complex) data set, the result is

$$
F_n = \frac{1}{2}(H_n + H_{N/2-n}^*) - \frac{i}{2}(H_n - H_{N/2-n}^*)e^{2\pi in/N} \quad n = 0, \ldots, N - 1
$$

(12.3.5)

A few remarks:
- Since $F_{N-n}^* = F_n$ there is no point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.
- Even so, we need values $H_n, \ n = 0, \ldots, N/2$ whereas four1 gives only
the values $n = 0, \ldots, N/2 - 1$. Symmetry to the rescue, $H_{N/2} = H_0$.

• The values \(F_0 \) and \(F_{N/2} \) are real and independent. In order to actually get the entire \(F_n \) in the original array space, it is convenient to put \(F_{N/2} \) into the imaginary part of \(F_0 \).

• Despite its complicated form, the process above is invertible. First peel \(F_{N/2} \) out of \(F_0 \). Then construct

\[
F_n^c = \frac{1}{2} (F_n + F_{N/2-n}^*)
\]
\[
F_n^o = \frac{1}{2} e^{-2\pi in/N} (F_n - F_{N/2-n}^*)
\]

and use \texttt{four1} to find the inverse transform of \(H_n = F_n^{(1)} + iF_n^{(2)} \).

Surprisingly, the actual algebraic steps are virtually identical to those of the forward transform.

Here is a representation of what we have said:

```c
#include <math.h>

void realft(float data[], unsigned long n, int isign)
Calculates the Fourier transform of a set of \( n \) real-valued data points. Replaces this data (which is stored in array data[1...n]) by the positive frequency half of its complex Fourier transform. The real-valued first and last components of the complex transform are returned as elements data[1] and data[2], respectively. \( n \) must be a power of 2. This routine also calculates the inverse transform of a complex data array if it is the transform of real data. (Result in this case must be multiplied by \( 2/n \).)
{
    void four1(float data[], unsigned long nn, int isign);
    unsigned long i,i1,i2,i3,i4,np3;
    float c1=0.5,c2,h1r,h1i,h2r,h2i;
    double wr,wi,wpr,wpi,wtemp,theta;
    Double precision for the trigonometric recurrences.
    theta=3.141592653589793/(double) (n>>1);
    Initialize the recurrence.
    if (isign == 1) {  
        c2 = -0.5;
        four1(data,n>>1,1);
        The forward transform is here.
    } else {
        c2=0.5;
        theta = -theta;
        Otherwise set up for an inverse transform.
    }
    wtemp=sin(0.5*theta);
    wpr = -2.0*wtemp*wtemp;
    wpi=sin(theta);
    wr=1.0+wpr;
    wi=wpi;
    np3=n+3;
    for (i=2;i<=(n>>2);i++) {
        Case i=1 done separately below.
        i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
        h1r=c1*(data[i1]+data[i3]);
        The two separate transforms are separated out of data.
        h1i=c1*(data[i2]-data[i4]);
        h2r = -c2*(data[i2]+data[i4]);
        h2i=c2*(data[i1]-data[i3]);
        Here they are recombined to form the true transform of the original real data.
        data[i1]=h1r+h2r+wi+2h1i;
        data[i2]=h1i+ur+2h2i+wi+2h2r;
        data[i3]=h1r+ur+2h2r+wi+2h2i;
        data[i4] = -h1i+ur+2h2i+wi+2h2r;
        The recursion.
        wr=(wtemp=wr)*wpr-wi*wpi+wr;
        wi=wi*wpr+wtemp*wpi+wi;
    }
    if (isign == 1) {
```
Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve differential equations (see §19.4). The most common boundary conditions for the solutions are 1) they have the value zero at the boundaries, or 2) their derivatives are zero at the boundaries. In the first instance, the natural transform to use is the sine transform, given by

\[F_k = \sum_{j=1}^{N-1} f_j \sin(\pi jk/N) \]

(12.3.7)

where \(f_j \), \(j = 0, \ldots, N - 1 \) is the data array, and \(f_0 \equiv 0 \).

At first blush this appears to be simply the imaginary part of the discrete Fourier transform. However, the argument of the sine differs by a factor of two from the value that would make this so. The sine transform uses sines only as a complete set of functions in the interval from 0 to 2\(\pi \), and, as we shall see, the cosine transform uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be "force-fit" into a form that allows its calculation via the FFT. The idea is to extend the given function rightward past its last tabulated value. We extend the data to twice their length in such a way as to make them an odd function about \(j = N \), with \(f_N = 0 \),

\[f_{2N-j} \equiv -f_j \quad j = 0, \ldots, N - 1 \]

(12.3.8)

Consider the FFT of this extended function:

\[F_k = \sum_{j=0}^{2N-1} f_j e^{2\pi ijk/(2N)} \]

(12.3.9)

The half of this sum from \(j = N \) to \(j = 2N - 1 \) can be rewritten with the substitution \(j' = 2N - j \)

\[\sum_{j=N}^{2N-1} f_j e^{2\pi ijk/(2N)} = \sum_{j'=1}^{N} f_{2N-j'} e^{2\pi i(2N-j')k/(2N)} \]

(12.3.10)

\[= -\sum_{j'=0}^{N-1} f_j e^{-2\pi i j'k/(2N)} \]
so that

\[F_k = \sum_{j=0}^{N-1} f_j \left[e^{2\pi ijk/(2N)} - e^{-2\pi ijk/(2N)} \right] \]

\[= 2i \sum_{j=0}^{N-1} f_j \sin(\pi jk/N) \] \hspace{1cm} (12.3.11)

Thus, up to a factor 2i we get the sine transform from the FFT of the extended function.

This method introduces a factor of two inefficiency into the computation by extending the data. This inefficiency shows up in the FFT output, which has zeros for the real part of every element of the transform. For a one-dimensional problem, the factor of two may be bearable, especially in view of the simplicity of the method. When we work with partial differential equations in two or three dimensions, though, the factor becomes four or eight, so efforts to eliminate the inefficiency are well rewarded.
From the original real data array \(f_j \) we will construct an auxiliary array \(y_j \) and apply to it the routine `realft`. The output will then be used to construct the desired transform. For the sine transform of data \(f_j, j = 1, \ldots, N - 1 \), the auxiliary array is

\[
y_0 = 0
\]

\[
y_j = \sin(j\pi/N)(f_j + f_{N-j}) + \frac{1}{2}(f_j - f_{N-j}) \quad j = 1, \ldots, N - 1 \tag{12.3.12}
\]

This array is of the same dimension as the original. Notice that the first term is symmetric about \(j = N/2 \) and the second is antisymmetric. Consequently, when `realft` is applied to \(y_j \), the result has real parts \(R_k \) and imaginary parts \(I_k \) given by

\[
R_k = \sum_{j=0}^{N-1} y_j \cos(2\pi jk/N)
\]

\[
= \sum_{j=1}^{N-1} (f_j + f_{N-j}) \sin(j\pi/N) \cos(2\pi jk/N)
\]

\[
= \sum_{j=0}^{N-1} 2f_j \sin(j\pi/N) \cos(2\pi jk/N)
\]

\[
= \sum_{j=0}^{N-1} f_j \left[\sin \left(\frac{(2k + 1)j\pi}{N} - \sin \left(\frac{(2k - 1)j\pi}{N} \right) \right) \right]
\]

\[
= F_{2k+1} - F_{2k-1} \tag{12.3.13}
\]

\[
I_k = \sum_{j=0}^{N-1} y_j \sin(2\pi jk/N)
\]

\[
= \sum_{j=1}^{N-1} (f_j - f_{N-j}) \frac{1}{2} \sin(2\pi jk/N)
\]

\[
= \sum_{j=0}^{N-1} f_j \sin(2\pi jk/N)
\]

\[
= F_{2k} \tag{12.3.14}
\]

Therefore \(F_k \) can be determined as follows:

\[
F_{2k} = I_k \quad F_{2k+1} = F_{2k-1} + R_k \quad k = 0, \ldots, (N/2 - 1) \tag{12.3.15}
\]

The even terms of \(F_k \) are thus determined very directly. The odd terms require a recursion, the starting point of which follows from setting \(k = 0 \) in equation (12.3.15) and using \(F_1 = -F_{-1} \):

\[
F_1 = \frac{1}{2}R_0 \tag{12.3.16}
\]

The implementing program is
#include <math.h>

void sinft(float y[], int n)
Calculates the sine transform of a set of \(n \) real-valued data points stored in array \(y[1..n] \). The number \(n \) must be a power of 2. On exit \(y \) is replaced by its transform. This program, without changes, also calculates the inverse sine transform, but in this case the output array should be multiplied by \(2/n \).
{
 void realft(float data[], unsigned long n, int isign);
 int j,n2=n+2;
 float sum,y1,y2;
 double theta,wi=0.0,wr=1.0,wpi,u,utemp;
 theta=3.14159265358979/(double) n; // Initialize the recurrence.
 utemp=sin(0.5*theta);
 u=-2.0*utemp*utemp;
 wpi=sin(theta);
 y[1]=0.0;
 for (j=2;j<=(n>>1)+1;j++) {
 wr=(wtemp=wr)*u-wi*wpi+wr; // Calculate the sine for the auxiliary array.
 wi=wi*u+wtemp*wpi+wi; // The cosine is needed to continue the recurrence.
 y1=wi*(y[j]+y[n2-j]); // Construct the auxiliary array.
 y2=0.5*(y[j]-y[n2-j]);
 y[j]=y1+y2; // Terms \(j \) and \(N - j \) are related.
 y[n2-j]=y1-y2;
 }
 realft(y,n,1); // Transform the auxiliary array.
 y[1]*=0.5; // Initialize the sum used for odd terms below.
 sum=y[2]=0.0;
 for (j=1;j<=n-1;j+=2) {
 sum += y[j]; // Even terms determined directly.
 y[j]=y[j+1];
 y[j+1]=sum; // Odd terms determined by this running sum.
 }
}

The sine transform, curiously, is its own inverse. If you apply it twice, you get the original data, but multiplied by a factor of \(N/2 \).

The other common boundary condition for differential equations is that the derivative of the function is zero at the boundary. In this case the natural transform is the cosine transform. There are several possible ways of defining the transform. Each can be thought of as resulting from a different way of extending a given array to create an even array of double the length, and/or from whether the extended array contains \(2N - 1 \), \(2N \), or some other number of points. In practice, only two of the numerous possibilities are useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses \(N+1 \) data points:

\[
F_k = \frac{1}{2} [f_0 + (-1)^k f_N] + \sum_{j=1}^{N-1} f_j \cos(\pi j k/N) \quad (12.3.17)
\]

It results from extending the given array to an even array about \(j = N \), with

\[
f_{2N-j} = f_j, \quad j = 0, \ldots, N-1 \quad (12.3.18)
\]

If you substitute this extended array into equation (12.3.9), and follow steps analogous to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosine transform (12.3.17). Another way of thinking about the formula (12.3.17) is to notice that it is the Chebyshev Gauss-Lobatto quadrature formula (see §4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency. In this case the auxiliary function is

\[y_j = \frac{1}{2} (f_j + f_{N-j}) - \sin(j\pi/N)(f_j - f_{N-j}) \quad j = 0, \ldots, N-1 \]

(12.3.19)

Instead of equation (12.3.15), realft now gives

\[F_{2k} = R_k \quad F_{2k+1} = F_{2k-1} + I_k \quad k = 0, \ldots, (N/2 - 1) \]

(12.3.20)

The starting value for the recursion for odd \(k \) in this case is

\[F_1 = \frac{1}{2} (f_0 - f_N) + \sum_{j=1}^{N-1} f_j \cos(j\pi/N) \]

(12.3.21)

This sum does not appear naturally among the \(R_k \) and \(I_k \), and so we accumulate it during the generation of the array \(y_j \).

Once again this transform is its own inverse, and so the following routine works for both directions of the transformation. Note that although this form of the cosine transform has \(N+1 \) input and output values, it passes an array only of length \(N \) to realft.

```c
#include <math.h>
#define PI 3.141592653589793

void cosft1(float y[], int n)
{
    Calculates the cosine transform of a set \( y[1..n+1] \) of real-valued data points. The transformed data replace the original data in array \( y \). \( n \) must be a power of 2. This program, without changes, also calculates the inverse cosine transform, but in this case the output array should be multiplied by \( 2/n \).

    void realft(float data[], unsigned long n, int isign);
    int j,n2;
    float sum,y1,y2;
    double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;

    theta=PI/n;    // Initialize the recurrence.
    utemp=sin(0.5*theta);
    wpr = -2.0*utemp*utemp;
    wpi=sin(theta);
    sum=0.5*(y[1]-y[n+1]);
    y[1]=0.5*(y[1]+y[n+1]);
    n2=n+2;
    for (j=2;j<=(n>>1);j++) {    // unnecessary since \( y[n/2+1] \) unchanged.
        wr=(wtemp=wr)*wpr-wi*wpi+wr;    // Carry out the recurrence.
        wi=wi*wpr+wtemp*wpi+wi;
        y1=0.5*(y[j]+y[n2-j]);
        y2=(y[j]-y[n2-j]);
        y[j]=y1-wi*y2;    // Calculate the auxiliary function.
        y[n2-j]=y1+wi*y2;
        sum += wr*y2;    // The values for \( j \) and \( N-j \) are related.
        j=n/2+1 unnecessary since \( y[n/2+1] \) unchanged.
    }
}
```

This program is designed to be used as a subroutine, with realft as a calling program. To use the subroutine, the calling program must call realft and pass two arguments:

1. The address of the input array \(y \).
2. The length \(n \) of the array \(y \).

The subroutine realft will perform the cosine transform, and the output array \(y' \) will be stored in place of the input array \(y \).

To use the subroutine, the calling program must call realft and pass two arguments:

1. The address of the input array \(y \).
2. The length \(n \) of the array \(y \).

The subroutine realft will perform the cosine transform, and the output array \(y' \) will be stored in place of the input array \(y \).
The second important form of the cosine transform is defined by

\[F_k = \sum_{j=0}^{N-1} f_j \cos \left(\frac{\pi k (j + \frac{1}{2})}{N} \right) \]
(12.3.22)

with inverse

\[f_j = \frac{2}{N} \sum_{k=0}^{N-1} F_k \cos \left(\frac{\pi k (j + \frac{1}{2})}{N} \right) \]
(12.3.23)

Here the prime on the summation symbol means that the term for \(k = 0 \) has a coefficient of \(\frac{1}{2} \) in front. This form arises by extending the given data, defined for \(j = 0, \ldots, N - 1 \), to \(j = N, \ldots, 2N - 1 \) in such a way that it is even about the point \(N - \frac{1}{2} \) and periodic. (It is therefore also even about \(j = -\frac{1}{2} \).) The form (12.3.23) is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations on “staggered” grids, where the variables are centered midway between mesh points. It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

\[y_j = \frac{1}{2} (f_j + f_{N-j-1}) - \sin \frac{\pi (j + \frac{1}{2})}{N} (f_j - f_{N-j-1}) \quad j = 0, \ldots, N - 1 \]
(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), we find

\[F_{2k} = \cos \frac{\pi k}{N} R_k - \sin \frac{\pi k}{N} I_k \]
(12.3.25)

\[F_{2k-1} = \sin \frac{\pi k}{N} R_k + \cos \frac{\pi k}{N} I_k + F_{2k+1} \]
(12.3.26)

Note that equation (12.3.26) gives

\[F_{N-1} = \frac{1}{2} R_{N/2} \]
(12.3.27)

Thus the even components are found directly from (12.3.25), while the odd components are found by recursing (12.3.26) down from \(k = N/2 - 1 \), using (12.3.27) to start.

Since the transform is not self-inverting, we have to reverse the above steps to find the inverse. Here is the routine:

```c
realft(y,n,1);
y[n+1]=y[2];
y[2]=sum;
for (j=4;j<n;j+=2) {
    sum += y[j];
    Equations (12.3.20).
    y[j]=sum;
}
```

The second important form of the cosine transform is defined by

\[F_k = \sum_{j=0}^{N-1} f_j \cos \left(\frac{\pi k (j + \frac{1}{2})}{N} \right) \]
(12.3.22)

with inverse

\[f_j = \frac{2}{N} \sum_{k=0}^{N-1} F_k \cos \left(\frac{\pi k (j + \frac{1}{2})}{N} \right) \]
(12.3.23)

Here the prime on the summation symbol means that the term for \(k = 0 \) has a coefficient of \(\frac{1}{2} \) in front. This form arises by extending the given data, defined for \(j = 0, \ldots, N - 1 \), to \(j = N, \ldots, 2N - 1 \) in such a way that it is even about the point \(N - \frac{1}{2} \) and periodic. (It is therefore also even about \(j = -\frac{1}{2} \).) The form (12.3.23) is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations on “staggered” grids, where the variables are centered midway between mesh points. It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

\[y_j = \frac{1}{2} (f_j + f_{N-j-1}) - \sin \frac{\pi (j + \frac{1}{2})}{N} (f_j - f_{N-j-1}) \quad j = 0, \ldots, N - 1 \]
(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), we find

\[F_{2k} = \cos \frac{\pi k}{N} R_k - \sin \frac{\pi k}{N} I_k \]
(12.3.25)

\[F_{2k-1} = \sin \frac{\pi k}{N} R_k + \cos \frac{\pi k}{N} I_k + F_{2k+1} \]
(12.3.26)

Note that equation (12.3.26) gives

\[F_{N-1} = \frac{1}{2} R_{N/2} \]
(12.3.27)

Thus the even components are found directly from (12.3.25), while the odd components are found by recursing (12.3.26) down from \(k = N/2 - 1 \), using (12.3.27) to start.

Since the transform is not self-inverting, we have to reverse the above steps to find the inverse. Here is the routine:
void cosft2(float y[], int n, int isign)
Calculates the "staggered" cosine transform of a set y[1..n] of real-valued data points. The transformed data replace the original data in array y. n must be a power of 2. Set isign to +1 for a transform, and to −1 for an inverse transform. For an inverse transform, the output array should be multiplied by 2/n.

 void realft(float data[], unsigned long n, int isign);
 int i;
 float sum,sum1,y1,y2,ytemp;
 double theta,wi=0.0,wi1,wpi,wpr,wr=1.0,wr1,wtemp;
 Double precision for the trigonometric recurrences.

 theta=0.5*PI/n; Initialize the recurrences.
 wi1=sin(theta);
 wpr = -2.0*wi1*wi1; // Use double precision
 wpi=sin(2.0*theta);
 if (isign == 1) {
 Forward transform.
 for (i=1;i<=n/2;i++) {
 y1=0.5*(y[i]+y[n-i+1]); // Calculate the auxiliary function.
 y2=wi1*(y[i]-y[n-i+1]);
 y[i]=y1+y2;
 y[n-i+1]=y1-y2;
 wr1=(wtemp=wr1)*wpr-wi1*wpi+wr1;
 wi1=wi1*wpr+wtemp*wpi+wi1;
 }
 realft(y,n,1); // Transform the auxiliary function.
 for (i=3;i<=n;i+=2) { // Even terms.
 wr=(wtemp=wr)*wpr-wi*wpi+wr;
 wi=wi*wpr+wtemp*wpi+wi;
 y1=y[i]*wr-y[i+1]*wi;
 y2=y[i+1]*wr+y[i]*wi;
 y[i]=y1;
 y[i+1]=y2;
 }
 for (i=n;i>=2;i-=2) { // Initialize recurrence for odd terms
 sum1=sum;
 sum += y[i];
 y[i]=sum1;
 }
 } else if (isign == -1) {
 Inverse transform.
 ytemp=y[n];
 for (i=n;i>4;i-=2) y[i]=y[i-2]-y[i]; // Form difference of odd terms.
 y[2]=2.0*ytemp;
 for (i=3;i<n;i+=2) { // Initialize recurrence for odd terms
 wr=(wtemp=wr)*wpr-wi*xpi+wr;
 wi=wi*wpr+wtemp*xpi+wi;
 y1=y[i]*wr-y[i+1]*xpi;
 y2=y[i+1]*wr+y[i]*xpi;
 y[i]=y1;
 y[i+1]=y2;
 }
 realft(y,n,-1); // Invert auxiliary array.
 y1=y[i]+y[n-i+1];
 y2=0.5*wi1*(y[i]-y[n-i+1]);
 y[i]=0.5*(y[i]+y2);
 y[n-i+1]=0.5*(y1-y2);
 wr1=(wtemp=wr1)*xpr-1.0*xpi+wr1;
 w1=x1+wtemp*xpi+w11;
An alternative way of implementing this algorithm is to form an auxiliary function by copying the even elements of f_j into the first $N/2$ locations, and the odd elements into the next $N/2$ elements in reverse order. However, it is not easy to implement the alternative algorithm without a temporary storage array and we prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do not rely on an auxiliary function or use an FFT routine. Instead, they carry out the transform directly, often coded in hardware for fixed N of small dimension[1].

CITED REFERENCES AND FURTHER READING:

12.4 FFT in Two or More Dimensions

Given a complex function $h(k_1, k_2)$ defined over the two-dimensional grid $0 \leq k_1 \leq N_1 - 1$, $0 \leq k_2 \leq N_2 - 1$, we can define its two-dimensional discrete Fourier transform as a complex function $H(n_1, n_2)$, defined over the same grid,

$$H(n_1, n_2) = \sum_{k_2=0}^{N_2-1} \sum_{k_1=0}^{N_1-1} \exp(2\pi i n_2 / N_2) \exp(2\pi i n_1 / N_1) h(k_1, k_2)$$

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum over k_1, or by reversing the order of summation and pulling the “subscripts 1” outside of the sum over k_2, we can see instantly that the two-dimensional FFT can be computed by taking one-dimensional FFTs sequentially on each index of the original function. Symbolically,

$$H(n_1, n_2) = \text{FFT-on-index-1} \left(\text{FFT-on-index-2} \left[h(k_1, k_2) \right] \right)$$

$$= \text{FFT-on-index-2} \left(\text{FFT-on-index-1} \left[h(k_1, k_2) \right] \right)$$

(12.4.2)