Metric Spaces
Introduction and examples

We have already studied “measure space” , i.e. a set, or better a space X together with a collection of measurable subsets  and a measure m defined on that collection of sets.
Now will define a metric space, check out its properties, and learn about some examples.

Definition: Metric Space
A Metric Space is a pair , where  is a set and  is a function defined on  with the following properties:
i)  and   implies that 
ii) 
iii) 

Examples: The classical example of a metric space is, of course, our familiar , i.e. the set of real numbers with the metric function being the absolute value. But there are many other examples. Each of the following are metric spaces:
· , where 
This space is called 

· , where 
This space is called 

· , where 
This space is called 

So, the space  can have several metrics. How can you visualize them?

Definition: (Unit Ball)
In a metric space  the set of all  that are at most 1 unit away from the origin, i.e. such that  is called the unit ball  for that metric.

Example: Draw a picture of the unit ball for our standard  metric space .
We need to find all  such that , or . That means that the unit ball in  is the closed interval 

Example: Show that , , and  are really the same spaces.

Clearly the underlying set for the three metric spaces is the same (namely ). But the various metrics are also the same:
:  so that for n = 1 we have: 
:  so that for n = 1 we have 
: left to the reader
Thus, the three metric spaces are the same (if n = 1). 

If n > 1, the metric spaces that , , and  are different, which you could confirm by drawing the unit ball for each as an exercise. Lets see what the unit ball in  looks like:
	
This looks like our “standard round” ball of radius 1, centered at the origin, which means that   is our standard Euclidian, 3D space.
The tricky property for a metric is usually the triangle inequality. For  the triangle inequality is based on the

Theorem: (Cauchy-Schwartz Inequality)


This inequality seems rather technical to prove, which is true, but there are (at least) two proofs: one rather straightforward and second, sweet and short and smart, proof.
Proof: First, let us verify that 

We start with the term on the right:

Let’s consider the middle term:

The first term can be simplified to:






Similarly, the last term can be rewritten as:
Taking everything together we get:



or equivalently:

But since the last term is definitely positive, this implies the Cauchy-Schwartz inequality:

There is a much smarter proof which proves the Cauchy-Schwartz inequality in a couple of lines:
Consider the function:

Hence, we have a quadratic function . That means that since the quadratic function has a most one zero, the discriminant of this function . But that implies that 

which is equivalent to the Cauchy-Schwarz inequality.
So far our metric spaces are variations of . But metric spaces can be more abstract:

Example: Consider the space  of all functions continuous on the interval  Add a metric to this space by defining . Then that space is a metric space, denoted by .

Similarly to putting different metrics on  we can define:

Example: Consider the space  of all functions continuous on the interval . Define a metric on this space be defining

Then this space, denoted by , is another metric space.

The proof of the triangle inequality depends on the Cauchy-Schwartz integral inequality:

Proposition: Cauchy-Schwartz Integral Inequality:
Assuming that all the integrals exist, we have:


The proof is left as an exercise.

There  are other named inequalities similar to the Cauchy-Schwartz inequality:

Proposition: Minkowski Inequality
· For sums/vectors: If a we have: for any p > 1 

· [bookmark: _GoBack]For integrals/functions: for any  


The final inequality that is important to know is:

Proposition: Hoelder’s Inequality


Both Minkovski and Hoelder’s inequality are used to prove the triangle inequality for additional vector spaces.

Exercises:
1. [bookmark: _Hlk479705809]Draw he unit balls for , for , and for . For extra credit, can you describe the unit balls in the three n-dimensional spaces, perhaps in words?
2. Show that , , and  really are metric spaces
3. Draw or describe the unit ball for  
4. Find the distance between  and :  in  and in 
5. Prove the Cauchy-Schwartz Integral inequality (Hint: try to use a ‘smart’ proof similar to the smart prove of the regular Cauchy-Schwartz inequality)
6. Show that  is a metric space (hint: use the Cauchy-Schwartz integral inequality)
7. Verify Minkowski’s as well as Hoelder’s inequality for  and 
8. [bookmark: _Hlk479705790]Show that if  are proportional, then Minkowski’s inequality turns into an equality
9. Show that  with  , ,is a metric space, denoted by  (Note that we already have introduced   for , and . 

