Lebesgue Integration
 Part 4: The General Lebesgue Integral
So far we have defined the Lebesgue integral of a bounded function. That was relatively easy but if that was all that there was we wouldn’t have gained that much over Riemann integrable functions, which also have to be bounded. To define the Lebesgue integral for a general function, including one that could be equal to infinity over parts of its domain, we first need to explore measurable functions.
Recall that in Topology we learned that a function f is continuous if and only if the inverse image of every open set is open. In fact, that makes for a much better general definition of continuous function than our usual  definition, which is tied to the real line, whereas the alternate definition would work between any spaces where open sets are defined. Based on that idea, we define measurable functions as functions whose inverse image of every measurable set is measurable.
Definition (Measurable Function)
Suppose  and are two measure spaces. Then a function is called measurable if the inverse image  of every measurable subset  is a measurable set . 
As it turns out, measurable functions are about the most general classes of functions you want to consider in analysis. Basically, anything that can be described is a measurable function, and functions that are not measurable are considered pathological in analysis. Certainly, all continuous functions on the real line are Lebesgue measurable (see exercises).
It may be difficult to check the inverse image of every measurable set, so here is an easier characterization of measurable functions:
Proposition: Proof 1: First we will show that if any one of , , , or  is measurable for all ., then all of these sets are measurable. 
The sets  and  are complements of each other, so they are equivalent because a set is measurable if and only if its complement is measurable.
Similarly you can see that   and  are equivalent.
Since  proves that if   is measurable, then  is measurable, since the countable union of measurable sets is measurable, and for the other direction we note that . Thus  and  are equivalent.
But that means that all four conditions are equivalent.
Now let us prove if f is measurable, then   is measurable for all : if  is measurable, then  is also measurable because (-∞,) is a Borel set, hence it is measurable, and therefore its inverse image is measurable. On the other hand, if  is measurable for all , then  is measurable, so that the inverse image of all open intervals are measurable because . But that implies that the inverse image of every Borel set is measurable, which implies that the function  is measurable.

Measurable functions are closed under addition, multiplication, and taking limits (but not composition).
Proposition (Combining Measurable Functions)
If  and  are two measurable functions, and is a sequence of measurable functions defined on the same domain, then:
· , , and   (where defined) are also measurable
· , , , , and - if it exists -  are measurable
Here is the connection between measurable and simple functions 
Proposition: (Simple Functions are Measurable)
A simple function  that takes no more than countably many distinct values  is measurable if and only if the sets

are measurable for all n.
Proof 2: First, suppose that  is a measurable simple function. Since  is measurable (measure zero) and  is measurable, it follows that  is measurable by the definition of a measurable function. Conversely, suppose the sets  are measurable. Let  be an arbitrary union of any of the countably-many values , so it follows that  is measurable (countable union of measurable sets is measurable). The preimage of  under , likewise, can be expressed as the union of any of the countably many sets , which must also be measurable (countable union of measurable sets is measurable). Therefore,  is measurable by definition

Proposition: (Measurable Functions and Simple Functions)
A bounded function f is measurable if and only if f can be represented as the limit of a uniformly convergent sequence of simple functions.
Proof 3: If  is the uniform limit of a convergent sequence of simple functions, then  is measurable by the theorem that states that  be a sequence of measureable functions on X, and let  be a function on X such that  for every  Then  is itself measurable, since simple functions are measurable by definition. 
On the other hand, take any bounded measurable function , and assume  for all . Let 

Then, because  is measurable, the sets  are measurable, so that the functions  are simple and converge uniformly to  as  since



As it turns out, sequences of functions that converge pointwise on a set  can be made to converge uniformly on a subset of  with almost the same measure as  (compare to Littlewood’s Three Principles):
Proposition (Egorov’s Theorem)
Let  be a sequence of measurable functons converging almost everywhere on a measurable set  to a function . Then, given any  there exists a measurable set  such that:
(i) 
(ii)  converges uniformly on  to f
Proof The function f is measurable since it is the limit of measurable functions. Let
        (1)
Therefore if m and n are fixed,  is the set of every point x such that

holds for all  . Furthermore, let’s have

Looking back at (1), it follows that

Since this is an increasing sequence of measurable setswe have 


Therefore, given any  and any δ > 0, there is an  such that
.             (2)

Now let

Then  satisfies both of the conditions of Egorov’s theorem: If , then, given any m =1,2,3,… 
         
for every  This shows that the sequence { is uniformly convergent on 

In order to show , let’s take the measure of the set -.. If , then there are arbitrarily large values of  such that

meaning that  will not converge to f at the point x0. Thus , since  converges to f almost everywhere, by assumption. From (2) it follows

Therefore

and therefore .
Sources: Introductory Real Analysis by A.N. Komogorov & S.V. Fomin, p???
Also – again, compare to Littlewood’s Three Principles – measurable functions are almost continuous, or more precisely: a measurable function can be made continuous by changing it on a set of arbitrarily small measure:
Theorem (Luzin’s Theorem)
If  is a function defined on a closed interval , then  is measurable if and only if given any there is a continuous function  such that .
Proof : First, we will show that ifis simple and  then there exists a closed set with m(E \ F)  <  such that  is continuous, where  is the restriction of  to  
Because  is simple  where  are coefficients and  are disjoint measurable sets. Since each  is measurable, we can find closed sets  with m( for . Now let F is closed as a finite union of closed sets,  m(E\F), and  restricted to  - or  - is continuous.
Now we show that for any measurable function  and  there is a closed set  such that m( and  is continuous where  is the restriction of  to , which is, essentially, Lusin’s theorem
Let  be a sequence of simple functions that converge pointwise to  on . By the first part of this proof we have that for each  we can pick a closed set  with m( \ such that the restriction of  to  is continuous. 
By Egorov’s Theorem we know that there is a  such that m(B and  converges uniformly to  on  \. Without loss of generality, we can assume that  is open (why).  Finally, let  which is closed since B was assumed to be open. .
We know that the restriction of  to   is continuous because a uniformly convergent sequence of continuous functions is continuous. 
But  which proves the theorem
Note: with a little more effort we can show that Lusin’s theorem is true for  measurable. 
Source: https://www.ma.utexas.edu/users/lpbowen/m381c/lecture-notes.pdf 

Now we (finally) have all the ingredients to define the general Lebesgue integral
Definition (General Lebesgue Integral)
A measurable function defined on a measurable set  is called Lebesgue integrable if there exists a sequence  of integrable simple functions converging uniformly to  on . The limit 

is called the Lebesgue integral of  over the set , written as 
This definition relies on the following conditions:
(1) The limit exists and is finite for any uniformly convergent sequence of integrable simple functions 
(2) The limit is independent of the choice of the sequence 
(3) The limit reduces to the previously defined Lebesgue integral for simple and for bounded functions
Condition 1 follows from the estimate


As for condition 2, suppose  and  both converge uniformly to  but  

Consider the sequence . Then  converges uniformly to  but  does not exist, contradicting condition (1).

Condition 3 is left as exercises.

Proposition (Properties of Lebesgue Integral)
If  and  are integrable over a set  then
i) For any number  we have  is integrable and 
ii) The function is integrable and 
iii) If  almost everywhere then 
iv) If  and  are disjoint measurable sets contained in E, then  

Proof: 
(I do not understand this proof):
We have  since  almost everywhere in. Thus . By (ii) have. Hence 
(I do not understand this proof):
One reason why the Lebesgue integral is preferred over the Riemann integral is the easy of switching integration and limits:
Theorem (Lebesgue Dominated Convergence Theorem)
Let  be integrable over  and a sequence of functions converging to a limit  on  such thaton . Then  is integrable and

Proof: 7 TBD

Here is another theorem that can be used to switch integration and limits:

Theorem (Lebesgue Monotone Convergence Theorem)
If  is a sequence of integrable functions such that ,  then the limit  exists and is integrable with

Proof 8: Because  is monotonically increasing:

By Fatou’s Lemma:

Since the inf is an upper bound and the sup is a lower bound:


Note: This theorem is also known as Levi’s theorem.
Finally, there is one more important theorem we want to state for the record.

Theorem (Fatou’s Lemma)
If  is a sequence of non-negative measurable functions and  almost everywhere on a set  then

Proof 9: (This proof needs to be redone or explained better)
The proof uses the monotone convergence theorem:
For every natural number k, define point wise the functions 
Then the , , … form an increasing sequence of measurable functions, meaning that , for all k, and converges point wise to the lim inf f. For all k we have , so that by the monotonicity of the integral  hence .

By the monotone convergence theorem



Exercises:
1. [bookmark: _GoBack]Prove that every continuous function  is Lebesgue measurable.
2. Prove that every bounded, measurable function f on a measurable set E with finite measure is Lebesgue integrable
3. Show that the general definition of Lebesgue integration reduces to prior definitions if is bounded or simple.
4. Show that if  is a sequence of integrable functions such that   for all  on a measurable set  and, then 
5. Is the above statement true for Riemann integrable functions and Riemann integrals?
