

You define!		
(le)		
C3[01/2]		
	3	

Lanci 4
Open which of xo G(X1p): O+(x0) · [xeX: p(x0,x)cr]
Closure of ScX: Su [bdny points]
lim X"=X (e) b(x'y") -)0 m m-10
A is clease in D M A-B and A > B (unally A = B)
4

Panel 5

Det: A metric space (X,p) is so	epurable of
1 d contains a countrelle derre	whit ite.
5- 65, 52, -] pt. 3= X	'
	•
€ R (\$ -11)	di, fr , 971 - 911 -
\mathbb{Q}_{n}^{n} (\mathbb{Q}_{n})	(x1, x2, x >>-
le (histe segu. of valuel ,	
	•
Class solute will reviewal	orth!
class pulyon with rational	· ·
5	

Ext Consider the set m of all bounded requency with

P(x14) = sup (|X1-y11|). Then m is a metric space.

Is it separable?

Detrice S = m, S= { sequence of O', and I's }

**Exty & S := D (X17) = 1

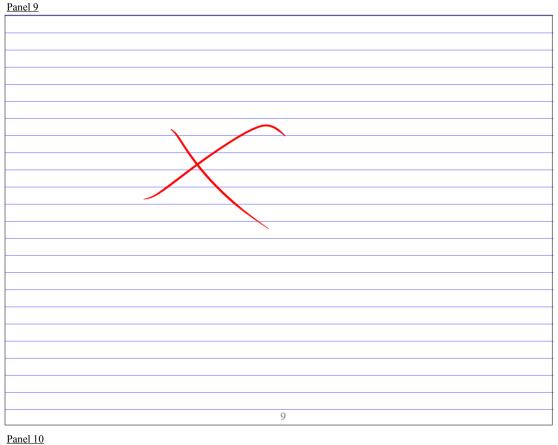
Counider O12(X), X & S

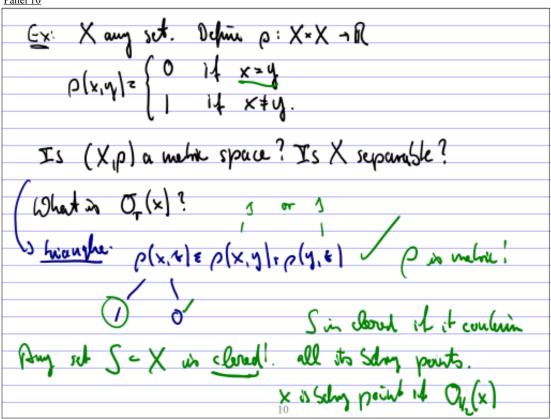
The O12(X), X & S

Suppose { X1, X2, - } denre in m

Panel 7	
Each Or (x) must contain at least one x;'s	
→ One (ville)	
But what is card (S)? What is cord of all seyn	
of 0's and 1's? The card (s)= card (P(INI) = C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
[], s, 11, 12, 14, 20, 11, 12, 2] - 1 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Į (į)

Panel 8
To summain
m = { belt. requences } , p(x, y) = sup (x, -y, e)
S=[sem: s=(s,sh,) and s;=1 =0]
For every × & S pich O, (x) = centl (O,(1))=and()
Showed but cound (S) = (c) = cound (P(M))
Finally: it here can a complete dema subset Colons then (deva) is core ((Oix (x1)) - cord (C) = contille
then (device) = cord (Oiz (x)) - cord (C) = contille
8





Thus, it X was sep. (a) X in consolutions

Complete Helic Spaces

Del: (X,P) in melic space, {xn} a segment x X.

The p(xn,xm) = e + u,m > N

then {xn} in called fundamental, i.e. Country/

The Hero IN (.t. it u,m > N

=> p(xn,xm) = e

Quir (X,P) in complete 14 every country segmece

converges to x = X.