
Theorem If $f \in C^{u+1}([a,6])$ then
f(x)-f(c)+ f(c) (x-w) + + f(m)(d) + Rman (x)
where $R_{n+1}(x) = \frac{f^{(n+1)}(d)}{(n+1)!} (x-c)^{n+1}$
Capranzo Porm of Remainely.
1

Application I. If $f \in C([a,b])$ and $c \in [a,b]$ has $f(x) = C(c) + \frac{f'(c)}{f'(c)}(x-c)^{n} + \frac{f'(x)}{f(x-c)}(x-c)^{n}$ and $\lim_{x \to c} f(x) = 0$ $\lim_{x \to c} C(x-c) = 0$ $\lim_{x \to c} C(x-c) = 0$ $\lim_{x \to c} C(x-c) = 0$

Application 2:
$$\lim_{N\to\infty} |u+v| = |u| = 1$$

Consider $f(x) = \sqrt{1+x} \in C^2(C^{-1}, v)$

$$f(x) = f(0) + \int_{1!}^{1} |x| + r(x) \cdot x, \quad \lim_{N\to\infty} r(x) = 0$$

$$= \int_{1}^{1} |x| + r(x) \cdot x + r(x) \cdot x$$

$$= \int_{1}^{1} |x| + r(x) \cdot x + r(x) \cdot x + \int_{1}^{1} |x| + r(x) \cdot x$$

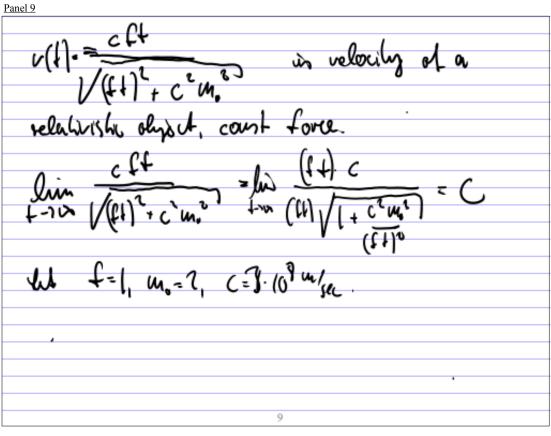
$$= \int_{1}^{1} |x| + r(x) \cdot x + \int_{1}^{1} |x| + r(x) \cdot x + \int_{1}^{1} |x| + r(x) \cdot x$$

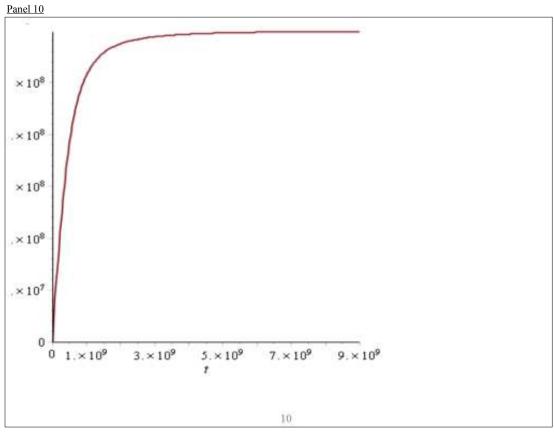
$$= \int_{1}^{1} |x| + r(x) \cdot x + \int_{1}^{1} |x| + \int_{1}$$

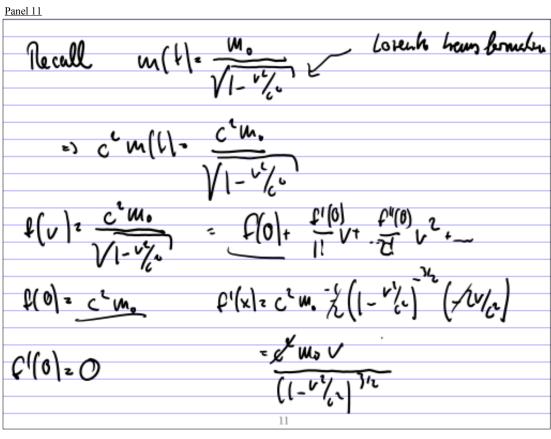
Relativity Theory 101

Know p(1)= m v(1) momentary, m=men, continue

Newton: F(1)= of p(1)= m v(1)= m a(1)


II F(1) = f in countant:


f= m v'(1) = v'(1)= f(1)= m v(1)= f(1)


I.e. is a penticle is subjected to countant force,

hen its velocity quests so at t=200;

What it was in not counter.	?	
C. W. W.	in mens at rept.	
mans becomes a it vac, if m. +0		
But photones have Wo=O, so Rey can go at V=C!		
P(+1=m(+)v(+) = v(+) m.	,	
A(N= of (N1)= of (N1-1/1)	$-\frac{m\theta\left(\frac{d}{dt}v(t)\right)c^2}{\left(-c^2+v(t)^2\right)\sqrt{-\frac{-c^2+v(t)^2}{c^2}}}$	
7		

Panel 12
f,1(0/2 M°
Thus will = m, c + 2 m, v + R(v) = E
JE=W, C ler v=0
as C a M, C Marked
12

Panel 13	
Special Relativity	
special relativity	
1	
	**
13	
Panel 14	
7 7 1 4 1	
A new Type of Integral	
2 1 2	
Quinto of RI:	
14	