Homework

1. A function \(u(x,y) \) is called harmonic if \(\frac{\partial^2}{\partial x^2} u + \frac{\partial^2}{\partial y^2} u = 0 \)

 Show that \(u(x,y) = e^x \cos(y) \) and \(v(x,y) = e^x \sin(y) \) are harmonic.

2. Are \(u(x,y) = x^2 - y^2 \) and \(v(x,y) = x^3 - 3xy^2 \) harmonic?

 What about \(u(x,y) \cdot v(x,y) \)?

3. For the following functions \(u(x,y) \) and \(v(x,y) \) such that \(f(z) = u + iv \) is analytic:

 a) \(u(x,y) = y^3 - 3x^2y \)
 b) \(u(x,y) = e^y \sin(x) \)
 c) \(u(x,y) = \sin(y) \sinh(y) \)

4. Suppose \(f(z) = u(x,y) + iv(x,y) \) is analytic and \(u_x, u_y, v_x, v_y \) are continuous. Show that \(u \) and \(v \) are harmonic.