Homework:

1. Use De Moivre's formula to find a trig identity for $\cos(3\theta)$.

2. Find all roots of

 \begin{align*}
 a) & \ (-2+2i)^{\frac{1}{3}} \\
 b) & \ (-1)^{\frac{1}{5}} \\
 c) & \ 8^{\frac{1}{6}} \\
 d) & \ (16i)^{\frac{1}{4}}
 \end{align*}

3. Let z be a non-zero complex number and n an integer.

 Show that $\ z^n + (\overline{z})^n $ is a real number.

4. Find all four roots of $z^4 + 4 = 0$ and prove that

 $z^4 + 4$ factors into 2 quadratics with real coefficients.