
Real Analysis HW: Chapter 6 

1. Find a function f(x) defined for all x and a sequence {xn} such that xn converges to 4 but f(xn) does not converge 

to f(4). 

According to Prop 6.2.3, continuity preserves limits. That means that if f is continuous at c, and xn is a sequence converging to c, then 

f(xn) would also converge to f(c).Thus, you need a function f that is not continuous at 4, a sequence that converges to 4, and then you 

hope that f(xn) won’t converge to f(4). Perhaps a simple “step” function might do the trick, with a “jump” at 4. 

2. Use the epsilon-delta definition of the limit of a function to show that the limit of f(x) = 1/x converges to ½ as x 

converges to 2. Prove similarly that       
 

   
 

 
, using again the epsilon-delta definition. 

You want to show that |f(x) – ½| < epsi as |x – 2| < delta. Similar to what we did with limits of sequences, you’d simplify |f(x) – ½|, 

and you hope to find the term |x-2| somehow. Then you might be able to guess a delta depending on the epsilon, somehow. Similarly 

for 1/x^2. 

3. Decide (with proof) where, if anywhere, the following functions are continuous: 

a. f(x) = 1 if x < 0 and f(x) = 0 otherwise 

b. g(x) = 1 if x is rational and g(x) = 0 if x is irrational 

c. h(x) = x if x is rational and h(x) = 0 if x is irrational 

d. k(x) = 1/q if x = p/q is rational and k(x) = 0 if x is irrational (for example f(4/9) = 1/9)  

The first function is easy, it has a simple jump at 0. Not much to it. You could use a sequence that converges to 0 but f(xn) does not 

converge to f(0) to prove discontinuity. 

The second function is much more complicated. You could try to take any number x0. You can find a sequence xn of rational numbers 

converging to x0, as well as a sequence of irrational numbers yn converging to x0 (for example if x0 is rational, xn + 1/n would be the 

rational sequence, and xn + e/n would be an irrational sequence. Now check f(xn) and f(yn). If the function was continuous, the limits 

would have to be the same. Are they? And since x0 was arbitrary, you have your conclusion.  

The third function turns out to be only continuous at x = 0, which you could show by the squeezing theorem and using any sequence 

converging to 0. You would still have to argue why it is not continuous anywhere else, which you could do similar to the previous 

function. 

The fourth function is the most complicated. First, for example f(2/13) = 1/13, f(-5/7) = 1/7, f(2) = f(2/1) = 1, and so forth. You will 

need to use a lemma that states that if pn/qn converges to any number c, then qn converges to infinity (hence 1/qn converges to 

what?). Using this lemma (which you can find, with proof, in section 6.6 - look for the “Countable Discontinuities” function). you could 

prove that the function is continuous exactly at the irrational points (and not continuous at all rational points). Go imagine that, it’s 

totally crazy. 

4. The function f(x) = x2 is continuous on [0, infinity). Is it uniformly continuous on that interval? Prove it or give a 

counter-example. 

I would try a counter-example: suppose it was uniformly continuous. Then |f(x) – f(y) |  < epsi as long as |x-y| < delta. Pick delta to be 

one, for example, and pick x = c – 1/3 and y = x + 1/3. Then |x-y|  is less than one, no matter what c you pick, but what about |f(x) – 

f(y)|, especially as c goes to infinity?  

5. Suppose the function f(x) is continuous at x. Show that |f(x)| is also continuous at x. Is the converse true? 

No hints here, you’re on your own. 

 



6. Consider the functions below. Are they continuous, or do they have a removable discontinuity, a jump 

discontinuity, or an essential discontinuity at the point where the function splits up (which is really the only 

point of interest for each function): 
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Remember, f(x) is continuous at x =c if f(c) exists, the limit as x goes to c exists and that limit is equal to f(c). 

A removable discontinuity means that f is really continuous at the point c, even though it does not appear that way at first. For 

example, for part (a) you notice that the top portion factors and cancels in such a way that you can easily find the limit of f as x goes 

to 2.  

For part (B) it’s similar, but f(2) is defined differently, which messes things up. However, if you could redefine f(2) the function would 

become continuous. Thus, it is ….. 

For (c) you could use the squeezing theorem to find the limit as x -> 0 of f(x). If that limit matches f(0), it would be continuous, 

otherwise you might be able to redefine the function at one point to make it continous. Thus, it is ….  

For (d) the squeezing theorem won’t do anything, but somewhere in chapter 6 there’s an example for f(x) = sin(1/x). You should be 

able to use that result for part (d). 

(e) and (f) are related, and since we have not had any jump discontinuity yet, perhaps we have that now.  

Finally, the last part is hopefully easy to visualize by just drawing the function. 


