Math 2511 - Talc III Practice Exam 1

This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to send me email.

1. Definitions: Please state in your own words the meaning of the following terms:
a) Vector
b) Dot product, cross product
c) Angle between two vectors
d) Unit vector
e) Line, plane
f) Projection of vector a onto vector b
g) Distance formulas between planes and points, lines and points, planes and lines, planes and planes, lines and lines
h) Tangent vector to a curve
i) Unit tangent vector to a curve
j) Unit normal vector to a curve
k) Binormal vector
l) Curvature
m) Length of a curve
n) Integral of a curve
o) Slinky, spirals
2. True/False questions:
a) $u \cdot u=\|u\|^{2} \nabla$
b) $\langle 1,3,2\rangle$ and $<-4,-2,5\rangle$ are perpendicular $\langle 1,3,2) \cdot(-4-2,5)=-4-6+10-\delta$

欢 $<1,3,-2>$ and $<2,6,4>$ are parallel $\not \mathbb{Z}$
奴 $v \cdot w=-w \cdot v$ f home for $V \times w=W \times V$
e $\frac{d}{d t}\|r(t)\|=\left\|\frac{d}{d t} r(t)\right\| F$
f) $\frac{d}{d t} p(t) \times r(t)=p^{\prime}(t) \times r^{\prime}(t) \quad \nabla$

* $r(t)=\langle\sqrt{t}+2,3-\sqrt[3]{t}, \sqrt[4]{t}\rangle$ is the equation of a line $\not \approx$

4. If $\|r(t)\| \equiv 1$ then $r(t) \times r^{\prime}(t)=0$ F (Shut $\left.+\cdot r^{\prime}=0\right)$
i) The planes $x+3 y+2 z=5$ and $4 x+2 y-5 z=0$ are perpendicular $(1,3,2) \cdot(4,25)=4+6-10=0$ j) The distance between $x-y+z=2$ and $x+y+z=1$ is zero
5. Vectors: Suppose $u=<7,-2,3>, v=<-1,4,5>$, and $w=<-2,1,-3>$
a) Are u and v orthogonal, parallel, or neither?

$$
\text { u.V: }\langle 7,-2,3\rangle \cdot\langle-1,4, r\rangle=-2-8+1 r=0 \text { so } u, v \text { Cure orthuy. }
$$

b) Find graphically and algebraically $2 u+3 v$ and $u-v$

$$
\begin{aligned}
& 2 u+3 v=\langle 14,-4,6\rangle+\langle-3,12,15\rangle \cdot\langle 11,8,21\rangle \\
& u-v=\langle 8,-6,-2\rangle
\end{aligned}
$$

c) Find the angle between v and w
d) Find $u \cdot v$ (dot product), $u \times y$ (cross product), $u \cdot(v \times w)$, and $\|u\|$

$$
\left.\left.\|u\|=\|<\psi_{1}^{-2},\right]\right) \|^{2} \sqrt{49+4+9}=\sqrt{G R}
$$

e) Find the projection of w onto u and the projection of u onto w
4. Lines and Planes
a) Find the equation of the plane spanned by $\langle 1,3,-2\rangle$ and $<2,1,2\rangle$ through the point $P(1,2,3)$

$$
\begin{aligned}
& n=\langle 1,0,-2) \times(2,1,2)=(8,-6,5)\rangle \stackrel{8 x-6 y-5 z=0}{\Rightarrow}=8 x-6 y-5 t+D=0 \quad(6-6-(10+1)=0 \Rightarrow 0=0
\end{aligned}
$$

b) Find the equation of the plane through $P(1,2,3), Q(1,-1,1)$, and $R(3,2,1)$

$$
\begin{array}{ll}
\overrightarrow{P Q}=(0,-3,-2) & n=\langle 0,-3,-2) \times(2,0,-2)=(62-4,6) \\
P R=(2,0,-2) & =2\langle 3,-2,])
\end{array}
$$

$$
2 x-2 y+3 z+1=0 \quad D z-8
$$

c) Finctie equation of the plane parallel to $x-y+z=2$ through $P(0,2,0)$

$$
\begin{aligned}
& u \\
&=(1,-1,1) \\
& \Rightarrow x-y+z+d=0 \quad \Rightarrow \\
& \Rightarrow 2+d=0 \Rightarrow x-y+z+2=0
\end{aligned}
$$

d) Find the equation of the line through $P(1,2,3)$ and $Q(1,-1,1)$

$$
\begin{aligned}
& \vec{V}=P Q=\langle 0,-3,-2\rangle \\
& l(1)=(1,2,3)+t\langle 0,-3,-2)=\langle 1,2-3 t,]-2 t)
\end{aligned}
$$

5. Distances
a) Find the distance between the line $x-y=2$ and $P(1,2)$

$$
\begin{gathered}
x-y-2=0 \\
\frac{d}{2} \frac{|1-2-2|}{\sqrt{2}}=\frac{3 / \sqrt{2}}{}
\end{gathered}
$$

b) Find the distance between the plane $x+y+z=1$ and the point $P(1,2,3)$

$$
\begin{aligned}
& p \times(1,0,3) \\
& M \sim Q \cdot(1,0,0))
\end{aligned}
$$

$$
\begin{aligned}
& P Q=\langle 0,-2-3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } d \cdot \frac{|1+2+3-1|}{\sqrt{3}}=\frac{5}{\sqrt{3}} \\
& \text { c) Find the distance between the planes } x-y+z=2 \text { and } 2 x-2 y+2 z=5
\end{aligned}
$$

plane 1

$$
\begin{aligned}
& \text { e) Do the plane } x-y+z=2 \text { and the line } l(t)=<1+t, 2 t, 1-5 t>\text { intersect? If so, where? }
\end{aligned}
$$

6. Vector valued functions:
a) Find $r^{\prime}(t)$ if $r(t)=<6 t,-7 t^{2}, t^{3}>$

$$
r^{\prime}(17)\left\langle 6,-14 t, 3 t^{2}\right\rangle
$$

b) Find $r^{\prime}(t)$ if $r(t)=<a \cos ^{3}(t), a \sin ^{3}(t), t \sin (t)>$

$$
\left.r^{\prime}(t)=\left\langle 3 a \cos ^{2}(t) \cdot(-\sin (t)), J a \sin ^{2}(t) \cdot \operatorname{ces}(t), \sin (J)+\operatorname{tas}(t)\right)\right)
$$

c) If $r(t)=<4 t, t^{2}, t^{3}>$, find $r^{\prime}(t), r^{\prime \prime}(t), \frac{d}{d t}\|r(t)\|$

$$
\frac{\frac{r^{\prime}(t)=\left\langle 4,\left(t, 3 t^{2}\right)\right.}{r^{\prime \prime}(t)=\langle 0,2,6 t)}}{\|r(t)\|=\sqrt{16 t^{2}+t^{4}+t^{6}}}=\frac{d}{d t}\|r(1)\|=\frac{32 t+4 t^{3}+6 t^{5}}{2 \sqrt{16 t^{2}+t^{4}+t^{6}}}
$$

d) If $r(t)=<e^{t}, 3 t^{3}, \frac{3}{6 t}>$ some curve, find $\int_{1}^{2} r(t) d t$

$$
\left.\int_{1}^{2}\left\langle e^{t}, 3 t^{3}, \frac{3}{6 t}\right) d f=<\int_{1}^{2} e^{t} d t, \int_{1}^{2} J t^{3} d t, \int_{1}^{2} \frac{1}{2} d t\right)=
$$

e) If $r(t)=\left\langle t, \frac{1}{t}\right\rangle$, find $T(t), N(t)$, and $B(t)=\underline{\left\langle e^{2}-e, \frac{3}{4}\left(2^{4}-1\right), \frac{1}{2} \ln (2)\right\rangle}$

$$
\begin{aligned}
& r^{\prime}(t)=\left\langle 1,-1 / t^{2}\right) \\
& \left\|r^{\prime}(t)\right\|=\sqrt{1+1 / t^{4}}=\frac{\sqrt{t^{4}+1}}{t^{2}} \\
& \Rightarrow \sqrt{2}=\frac{t^{2}}{\sqrt{t^{4}+1}}\left(1-1 / l^{2}\right)=\left\langle\frac{t^{2}}{\sqrt{t^{4}+1}},-\frac{1}{\sqrt{t^{4}+1}}\right)=\frac{\left.\frac{1}{\sqrt{t^{4}+1}}<t^{2},-1\right)}{l}
\end{aligned}
$$

if contimede on last pare
f) Repeat (e) for $r(t)=<e^{t} \cos (t), e^{t} \sin (t)>$ for $t=\frac{\pi}{2}$

$$
\begin{aligned}
& r^{\prime}(t)=\left\langle e^{t} \cos (t)-e^{t} \sin (1) e^{t} \sin (d)+e^{t} \cos (11)=e^{t}\langle\cos (\|)-\sin (t), \sin (1) t \cos (1))\right. \\
& \left\|r^{\prime}(t)\right\|=e^{t} \sqrt{(\cos (t)-\sin (t))^{2}+(\sin (t)+\cos (t))^{2}}=\sqrt{2} e^{t} \\
& \Rightarrow \nabla=\frac{1}{\sqrt{2}}(\cos (\|)-\sin (d), \sin (f)+\cos (\|)) \Rightarrow \nabla(t)=\frac{1}{\sqrt{2}}\langle-\sin (d)-\cos (d), \cos (\|)-\sin (l l) \\
& \Rightarrow \nabla(\pi / 2)=1 / 2<-111)
\end{aligned}
$$

g) If $r(t)=<3-3 t, 4 t>$, find the arc length of the curve between 0 and 1

$$
=2 \int_{0}^{\text {g) If } r(t)=\langle 3-3 t, 4 t\rangle \text {, find the arc length of the curve bet }} \| r^{\prime}\left(\| \| d A=\int_{0}^{1}\|(-3,4)\| d A=J\right.
$$

h) If $r(t)=<4 t, 3 \cos (t), 3 \sin (t)>$, find the arc length of the curve between 0 and $\frac{\pi}{2}$

$$
\begin{aligned}
& r^{\prime}(l)=\left\langle\psi_{1}-3 \sin \left(h_{1}, \partial \cos (h)\right.\right. \\
& \Rightarrow L_{0}^{2} \int_{0}^{\pi / 2} \| r\left(l d \| d A=\int_{0}^{\pi / 2} \sqrt{16+9\left(\sin ^{2}(k)+\cos ^{2}(h)\right)} d A=\sqrt{5 / 2}\right.
\end{aligned}
$$

i) Find the curvature of $r(t)=<t, 3 t^{2}, \frac{t^{2}}{2}>$

$$
\begin{aligned}
& r^{\prime}\left(\Lambda=\langle 1,61, f) \quad r^{\prime} \times r^{\prime \prime}=\left(\left.\begin{array}{ccc}
i & 1 & h \\
1 & 6 t & + \\
0 & 6 & 1
\end{array} \right\rvert\,=\langle 0,-1,6-6 t)\right.\right. \\
& \left.r^{\prime \prime}(1) \ll, 6,1\right) \\
& \Rightarrow K=\frac{\left\|r^{\prime}=r^{\prime \prime}\right\|}{\left\|r^{\prime}\right\|^{3}}-\frac{\left.\sqrt{(6-6)^{2}}, 1\right)}{\left(\sqrt{1+322^{2}}\right)^{3}}
\end{aligned}
$$

8. Picture: Sketch the circle that fits staph and the points $x=0$ and $x=3$. At which of the two points is the curvature smaller?

$$
\begin{aligned}
& X \text { in imatlor } \\
& \text { at } x=3
\end{aligned}
$$

9. Picture: Match the following functions to their corresponding plots.

10. Picture: The graph below shows a vector-valued function. Sketch the unit tangent, unit normal, acceleration, tangential and normal components of the acceleration for $t=3$. cunt t. 0

11. Prove the following facts:

$$
\text { b) Show that } u \cdot(v \times u)=0
$$

c) Show that if $y=f(x)$ is a function that is twice continuously differentiable, then the curvature of f at a point x is $K=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left[f^{\prime}(x)\right]^{2}\right)^{3 / 2}}$

$$
\left.y_{2}(1)(c) \quad(1)=<1, c(1)\right)
$$

$$
=<t, f(1,0)
$$

d) Prove that the curvature of a line in space is zero. straight. Cor wand!:

Note that $\|\nabla\|: 1,\|M\|=1$, and $\nabla \cdot N=O$ so Hims answer wiglet even be liklsal

$$
\begin{aligned}
& F(f)=\frac{1}{\sqrt{t^{4}+1}}\left\langle t^{2},-1\right) \\
& \left.\Rightarrow \underline{\nabla^{\prime}(1)}=-\frac{1}{x} \frac{24 f^{3}}{\left(t^{4}+1\right)^{3 / 2}}\left\langle t^{2},-1\right)+\frac{1}{\left(t^{4}+1\right)^{12}}<2 t, 0\right)= \\
& \left.\left\langle\frac{-2 t^{5}}{\left(t^{4}+1\right)^{3 / 2}}+\frac{2 t}{\left(t^{4}+1\right)^{2}}, \frac{2 t^{3}}{\left(t^{4}+1\right)^{2}}\right)=\frac{1}{\left(b^{4}+1\right)^{2 / 2}}<-2 b^{5}+2 t\left(b^{4}+1\right), 2 b^{3}\right) \\
& \frac{2 \frac{2 t}{\left(b^{4}+1\right)^{2 / 2}}\left\langle 1, t^{2}\right\rangle}{2} \\
& \Rightarrow \overrightarrow{ } \Rightarrow \nabla^{\prime} U=\frac{2 t}{\left(t^{4}+1\right)^{3 / 2}} \cdot\left(1+t^{4}\right)^{1 i}=\frac{2 d}{t^{4}+1} \\
& \left.\left.\Rightarrow N=\nabla^{\prime} /\left\|\nabla^{\prime}\right\|^{2} \frac{2^{t}}{\left(b^{4}+1\right)^{2^{\prime 2}}}<1, b^{2}\right) \cdot \frac{\left(f^{4}+1\right)}{2 t}=\frac{1}{\sqrt{t^{4}+1}}<1, f^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.r^{\prime},<1, f, 0\right) \\
& =\frac{1}{\left(1+\left[f^{\prime}(x)\right]^{2}\right)^{3 / 2}} \quad r^{\prime} \text { •' }^{\prime} \div\left(0,0, f^{\prime \prime}\right)
\end{aligned}
$$

