Math 2511: Cal III - Practice Exam 3

1. State the meaning or definitions of the following terms:
a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work, surface area
b) curl and divergence of a vector field F , gradient of a function
c) $\iint_{R} d A$ or $\iint_{R} f(x, y) d A$ or $\iiint_{Q} f(x, y, z) d V$
d) $\int_{C} d s$ or $\int_{C} f(x, y) d s$ or $\int_{C} f(x, y) d x$ or $\int_{C} f(x, y) d y$
e) $\int_{C} \vec{F} \cdot d \vec{r}$
f) $\iint_{S} g(x, y, z) \cdot d S$
g) $\int_{C} M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z$
h) What does it mean when a "line integral is independent of the path"?
i) State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.]

j) State Green's Theorem. Make sure to know when it applies, and in what situation it helps.
$\oint_{C} M d x+N d y=\iint_{R} \frac{\partial y}{\partial x}-\frac{\partial M}{\partial y} d A$, C closed chore, R pos. oriented innich of C
2. Below are four algebraic vector fields and four sketches of vector fields. Match them.
[A]

[B]

[C]

[D]

(1) $F(x, y)=\langle x, y\rangle$, (2)
(2) $F(x, y)=<-y, x>$,
(3) $F(x, y)=<x, 1>$,
(4) $F(x, y)=\langle 1, y\rangle$
b) Below are two vector fields. Which one is clearly not conservative, and why?

№wn
The hist decane $\oint_{C} F \operatorname{dr} \neq 0$
c) Say in the left vector field above you integrate over a straight line from $(0,-1)$ to $(1,0)$. Is the integral positive, negative, or zero?
pos (atcuerh)

How about if you integrate from $(-2,1)$ to $(2,1)$? Keg. (cosh evert)
How about from $(-2,-1)$ to $(2,-1)$? posilue
3. Are the following statements true or false:
a) If the divergence of a vector is zero, the vector field is conservative. \#
b) If $F(x, y, z)$ is a conservative vector field then $\operatorname{curl}(F)=0$
c) If a line integral is independent of the path, then $\int_{C} F \cdot d r=0$ for every path C
d) If a vector field is conservative then $\int_{C} F \cdot d r=0$ for every closed path $C \rrbracket$
e) $\iint_{R} d A$ denotes the surface area of the region R
f) $\iint_{R}^{R} f(x, y) d A$ denotes the volume of the region under the surface $f(x, y)$ and over R , if f is positive.
g) Can you apply the Fundamental Theorem of line integrals for the function $f(x, y, z)=x y \sin (z) \cos \left(x^{2}+y^{2}\right)$? arpleo to vecke Cedes
h) Can you apply the Fundamental Theorem of line integrals for the vector field ∇ $F(x, y)=<6 x y^{2}-3 x^{2}, 6 x^{2} y+3 y^{2}-7>$? is consurvitio
i) Can you apply Green's theorem for a curve C , which is a straight line from $(0,0,0)$ to $(1,2,3)$?
requite colored cum
4. Suppose that $F(x, y, z)=<x^{3} y^{2} z, x^{2} z, x^{2} y>$ is some vector field.
a) Find $\operatorname{div}(F)$

$$
\nabla_{x}+F_{y}+\nabla_{t} \cdot 3 x^{2} y^{2} z+0+0
$$

b) Find $\operatorname{curl}(F)$
c) Find $\operatorname{curl}(\operatorname{curl}(F))$
do curl agent...
d) Find $\operatorname{div}(\operatorname{curl}(F))$

$$
\operatorname{div}\left(0, x^{3} y^{2}-2 x y, 2 x z-2 x^{3} y z\right)=0+2 x^{2} y+2 x-2 x^{3} / y=2 x
$$

e) grad., div., and curl of the vector field if appropriate for $\left\langle x^{2}, y^{2}, z^{2}\right\rangle$

$$
\left.\operatorname{div}\left(x^{2}, y^{\wedge}, x^{2}\right)=?(x+y, z),\left|\begin{array}{lll}
i & 0 & k \\
d x & \partial y & \theta_{2} \\
x^{2} & y^{2} & z^{2}
\end{array}\right|=<0,0,0\right)
$$

f) grad., div., and curl of the vector field if appropriate for $\langle\cos (y)+y \cos (x), \sin (x)-x \sin (y), x y z\rangle$ div oud end ane apporbuwta alfonso tho
g) grad., div., and curl of the vector field if appropriate for $f(x, y, z)=z \ln \left(x^{2}+y^{2}\right)$

$$
\operatorname{arach}\left(+\ln \left(x^{2}+y^{2}\right)\right):\langle\underbrace{\left\langle\frac{2 x+6}{x^{2}+y^{2}}, \frac{2 y 8}{x^{2}+y^{2}}, \ln \left(x^{2}+y^{2}\right)\right\rangle}
$$

5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
a) $F(x, y)=<2 x y, x^{2}>$

$$
\text { cousweralive, } f=x^{2} y+c
$$

b) $F(x, y)=<e^{x} \cos (y), e^{x} \sin (y)>$
not conswratis
c) $F(x, y, z)=<\sin (y),-x \cos y, 1>$
d) $F(x, y, z)=<2 x y, x^{2}+z^{2}, 2 z y>$
e) $F(x, y)=<6 x y^{2}-3 x^{2}, 6 x^{2} y+3 y^{2}-7>$
consenvatiko i fo $3 x^{2} y^{2}+x^{2}+y^{2}-7 y+6$
f) $F(x, y)=<-2 y^{3} \sin (2 x), 3 y^{2}(1+\cos (2 x)>$
nat
g) $F(x, y, z)=\left\langle 4 x y+z, 2 x^{2}+6 y, 2 z>\right.$
h) $F(x, y, z)=<4 x y+z^{2}, 2 x^{2}+6 y z, 2 x z>$
6. Evaluate the following integrals:
a) $\iint_{R} \cos \left(x^{2}\right) d A$ where R is the triangular region bounded by $y=0, y=x$, and $x=1$

b) $\int_{0}^{1} \int_{1}^{2 y} x^{2} y^{3} d x d y$ che compute

$$
r^{\prime}=\left\langle 2 t_{1} l\right)
$$

c) $\int_{C} d s$, where C is the curve given by $r(t)=<t^{2}, 1+t>, 0 \leq t \leq 2$ (you might want to use Maple at some point)
che computes
d) $\int_{C} x^{2} y^{3} d x$, where C is the curve given by $r(t)=\left\langle t^{2}, t^{3}>, 0 \leq t \leq 2\right.$

$$
\int_{0}^{2}\left(f^{6}\right)^{2}\left(t^{3}\right)^{3} 2 t d t=\text { use computes }
$$

e) $\int_{C} x^{2}-y+3 d s$ where C is the circle $r(t)=<2 \cos (t), 2 \sin (t)>, 0 \leq t \leq \pi$
f) $\int_{C} x^{2}-y+3 z d s$ where C is a line segment given by $r(t)=<t, 2 t, 3 t>, 0 \leq t \leq 1$
g) $\int_{C} F \cdot d r$ where $F(x, y)=<y, x^{2}>$ and C is the curve given by $r(t)=<4-t, 4 t-t^{2}>, 0 \leq t \leq 3$
h) $\int_{C} F \cdot d r$ where $F(x, y)=<y z, x^{2}, z y>$ and C is the curve given by $r(t)=<1-t, 3 t, 2-t^{2}>, 1 \leq t \leq 3$ computes
i) $\int_{C} y d x+x^{2} d y$ where C is a parabolic arc given by $r(t)=\left\langle t, 1-t^{2}\right\rangle,-1 \leq t \leq 1$

1

$$
\int_{-1}(l-k) d x+(t)^{2}(-2 t) d t=\text { compete }
$$

j) Find the surface integral $\iint_{S} x-2 y+z d S$, where S is the surface $z=10-2 x+2 y$ such that x is between 0 and 2 and y is between 0 and 4 .

$$
\int_{0}^{2} \int_{0}^{4} x-2 y+(10-2 x+2 y) \sqrt{1+6+4} d y d x=\text { compute }
$$

k) $\iint_{S}(x+z) d S$ where S is the first-octant portion of the cylinder $y^{2}+z^{2}=9$ between $\mathrm{x}=0$ and $\mathrm{x}=4$

$$
\begin{aligned}
& z= \pm \sqrt{q-y^{2}} \quad f_{x}=0_{1} f_{y}=-\frac{y}{\sqrt{q_{y}} b_{4}} 1+x_{y}^{2}+f_{y}^{2}=1+\frac{+y^{2}}{q-y^{3}}=\frac{q-y^{2}+y^{2}}{q-y^{2}}=q / q-y^{b} \\
& \Rightarrow \int_{\pi}\left(x+\sqrt{q-y^{2}}\right) \cdot \sqrt{q / q-y^{2}} d y d x=\int_{0}^{4}\left(x+\sqrt{q-y^{8}} \sqrt{\sqrt{9}} \frac{\beta^{2}}{\sqrt{q-y^{2}}} d y d x=\right.\text { computer }
\end{aligned}
$$

7. For some of the following line integrals there may be short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)
a) $\int_{C} F \cdot d r$ where $F(x, y)=<e^{x} \cos (y), \underbrace{-e^{x} \sin (y)}>$ and C is the curve $r(t)=<2 \cos (t), 2 \sin (t)>, 0 \leq t \leq 2 \pi$ closed che so wee Geek: $=\iint\left(-e^{x} \operatorname{din}(y)-\left(-e^{x} \sin (y)\right) d A=O\right.$
b) $\int_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z$ where C is some smooth curve from $(0,0,0)$ to $(1,4,3)$

c) $\int_{C} F \cdot d r$ where $F(x, y)=<y^{3}+1,3 x y^{2}+1>$ and C is the upper half of the unit circle, from $(1,0)$ to $(-1,0)$ couservajer aid potential $y^{3} x+x+y+C\left|=y^{3} x+x+y\right|_{(1,0)}^{(-1,0)}-1-1=-2$
d) $\int_{C} F \cdot d r$ where $F(x, y)=<y^{3} x, 3 x y^{2}>$ and C is the line segment from $(-1,0)$ to $(2,3)$.

e) $\int_{C} y^{3} d x+\underbrace{x^{3}+3 x y^{2}}) d y$ where C is the path from $(0,0)$ to $(1,1)$ along the graph of $y=x^{3}$ and from $(1,1)$ to $(0,0)$

8. Green's Theorem
a) Use Green's theorem to find $\int_{C} F \cdot d r$ where $F(x, y)=<y^{3}, \underbrace{x^{3}+3 x y^{2}}>$ and C is the circle with radius 3 , oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations, or use Maple)
Closed career

b) Evaluate $\iint_{R} d A$ where R is the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ by using a vector field $F(x, y)=<-\frac{y}{2}, \frac{x}{2}>$ and the boundary C of the ellipse R . Note that we did this in class, it is a very special application of Green's theorem.

9. Evaluate the following integrals. You can use any theorem that's appropriate:
c) $\int_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z$ where C is a smooth curve from $(0,0,0)$ to $(1,4,3)$ see previous examples
d) $\int_{C} y d x+\underline{2} x d y$ where C is the boundary of the square with vertices $(0,0),(0,2),(2,0)$, and $(2,2)$

Green: $\quad \iint_{\text {square }}(2-1) d A=$ ave $($ square $)=4$
e) $\oint_{C} x y^{2} d x+x^{2} y d y$, where C is given by $r(t)=<4 \cos (t), 2 \sin (t)>$, t between 0 and 2 Pi .

Green, cosserwhine vector hale: $=$
f) $\int_{C} x y d x+x^{2} d y$ where C is the boundary of the region between the graphs of $y=x^{2}$ and $y=x$.

10. Prove that if $F(x, y, z)=<M(x, y, z), N(x, y, z), P(x, y, z)>$ is any vector field where M, N, P are twice continuously differentiable then $\operatorname{div}(\operatorname{curl}(F))=0$
wii fay it, it will cork ow t

Use Green's Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that the closed curve encloses a simply connected region and all conditions of Green's theorem are satisfied).

