Math 2511: Calc III - Practice Exam 3

- 1. State the meaning or definitions of the following terms:
 - a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve, work, surface area
 - b) curl and divergence of a vector field F, gradient of a function
 - c) $\iint_R dA$ or $\iint_R f(x, y) dA$ or $\iiint_Q f(x, y, z) dV$
 - d) $\int_{C}^{R} ds$ or $\int_{C}^{R} f(x, y) ds$ or $\int_{C}^{R} f(x, y) dx$ or $\int_{C}^{R} f(x, y) dy$
 - e) $\int_{C} \vec{F} \cdot d\vec{r}$
 - f) $\iint_{S} g(x, y, z) \cdot dS$
 - g) $\int_C M(x, y, z)dx + N(x, y, z)dy + P(x, y, z)dz$
 - h) What does it mean when a "line integral is independent of the path"?

- i) State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.]

 State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.]

 State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.]

 State the Fundamental Theorem of Line Integrals. Make sure to know when it applies, and when it helps.]
- j) State Green's Theorem. Make sure to know when it applies, and in what situation it helps.

\$ Mdx + Ndy = SS = 2 or dA, C closed corne, R Unice of C

2. Below are four algebraic vector fields and four sketches of vector fields. Match them.

- (1) $F(x, y) = \langle x, y \rangle$, (2) $F(x, y) = \langle -y, x \rangle$, (3) $F(x, y) = \langle x, 1 \rangle$, (4) $F(x, y) = \langle 1, y \rangle$
- b) Below are two vector fields. Which one is clearly not conservative, and why?

c) Say in the left vector field above you integrate over a straight line from (0,-1) to (1,0). Is the integral positive, negative, or zero?

		How about if you integrate from $(-2,1)$ to $(2,1)$? (2,1)? $(2,1)$? $(2,1)$?
		How about from (-2,-1) to (2,-1)?
3.	Arca)	e the following statements true or false: If the divergence of a vector is zero, the vector field is conservative.
	b)	If $F(x, y, z)$ is a conservative vector field then $curl(F) = 0$
	c)	If a line integral is independent of the path, then $\int_C F \cdot dr = 0$ for every path C
	d)	If a vector field is conservative then $\int_{C} F \cdot dr = 0$ for every <i>closed</i> path C
	e)	$\iint_{\mathbb{R}} dA$ denotes the surface area of the region R
	f)	$\iint_{\mathbb{R}} f(x,y) dA$ denotes the volume of the region under the surface $f(x,y)$ and over R, if f is positive.
	g)	Can you apply the Fundamental Theorem of line integrals for the function $f(x, y, z) = xy \sin(z) \cos(x^2 + y^2)$?
	h)	Can you apply the Fundamental Theorem of line integrals for the vector field $F(x, y) = \langle 6xy^2 - 3x^2, 6x^2y + 3y^2 - 7 \rangle$?
	i)	Can you apply Green's theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?
4.	Çııı	ppose that $F(x, y, z) = \langle x^3 y^2 z, x^2 z, x^2 y \rangle$ is some vector field.
→.	a)	Find $div(F)$
		Fx + Fy + Fe = 3x y & + 0 + 0
	b)	Find $curl(F)$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \\ \lambda & \lambda \end{cases}$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \end{cases}$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \end{cases}$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \end{cases}$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \end{cases}$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \end{cases}$ $\begin{cases} \lambda & \lambda \\ \lambda & \lambda \end{cases}$
	c)	Find $curl(curl(F))$
		do cent again
	d)	Find $div(curl(F))$
		div (0, x3y2-2xy, 2x2-2x3y+)=0+2x3y+2x-2x3y = 2x
	e)	grad., div., and curl of the vector field if appropriate for $\langle x^2, y^2, z^2 \rangle$ $ \text{div} \left(\begin{array}{c} \chi^2, y^2, z^2 \\ \chi^2, y^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \chi^2, \chi^2, z^2 \end{array} \right) = \left(\begin{array}{c} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda &$
	f)	grad., div., and curl of the vector field if appropriate for $\langle \cos(y) + y \cos(x), \sin(x) - x \sin(y), xyz \rangle$

- 5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
 - a) $F(x, y) = \langle 2xy, x^2 \rangle$ CONSERVATIVE, $f(x, y) = \langle 2xy, x^2 \rangle$
 - b) $F(x, y) = \langle e^x \cos(y), e^x \sin(y) \rangle$
 - c) $F(x, y, z) = <\sin(y), -x\cos y, 1 >$
 - d) $F(x, y, z) = \langle 2xy, x^2 + z^2, 2zy \rangle$
 - e) $F(x, y) = \langle 6xy^2 3x^2, 6x^2y + 3y^2 7 \rangle$ Consumption: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$
 - f) $F(x, y) = <-2y^3 \sin(2x), 3y^2(1 + \cos(2x) >$
 - g) $F(x, y, z) = <4xy + z, 2x^2 + 6y, 2z >$
 - h) $F(x, y, z) = \langle 4xy + z^2, 2x^2 + 6yz, 2xz \rangle$
- 6. Evaluate the following integrals:
 - a) $\iint \cos(x^2) dA$ where R is the triangular region bounded by y = 0, y = x, and x = 1

b)
$$\int_{0}^{1} \int_{1}^{2y} x^{2}y^{3}dxdy$$
 we compute

c) $\int_C ds$, where C is the curve given by $r(t) = \langle t^2, 1+t \rangle$, $0 \le t \le 2$ (you might want to use Maple at some point)

d) $\int_{C} x^{2}y^{3}dx$, where C is the curve given by $r(t) = \langle t^{2}, t^{3} \rangle$, $0 \le t \le 2$

e)
$$\int_{C} x^{2} - y + 3ds \text{ where C is the circle } r(t) = \langle 2\cos(t), 2\sin(t) \rangle, \ 0 \le t \le \pi$$

$$\int_{C} \left(2\cos(1) \right)^{2} - \left(2\sin(1) \right) + \int_{C} \sqrt{4(\cos^{2} t)^{3/2}} dt = 0$$
Computes

- f) $\int_{C} x^{2} y + 3z ds \text{ where C is a line segment given by } r(t) = \langle t, 2t, 3t \rangle, \ 0 \le t \le 1$ $\int_{C} \left(\frac{1}{t} \right)^{2} \left(\frac{1}{t} \right)^{2} + 3\left(\frac{1}{t} \right) \cdot \sqrt{\left(\frac{1}{t} + \frac{1}{t} \right)} \right) dt = 0$ computes
- g) $\int_{C} F \cdot dr \text{ where } F(x, y) = \langle y, x^{2} \rangle \text{ and C is the curve given by } r(t) = \langle 4 t, 4t t^{2} \rangle, \ 0 \le t \le 3$ $\int_{C} \langle y, x \rangle \langle x \rangle$
- h) $\int_{C} F \cdot dr \text{ where } F(x,y) = \langle yz, x^{2}, zy \rangle \text{ and } C \text{ is the curve given by } r(t) = \langle 1-t, 3t, 2-t^{2} \rangle, 1 \le t \le 3$ $\int_{C} y + C \times + \chi^{2} dy + 2 \sqrt{3} + 2 \sqrt$
- i) $\int_{C} y dx + x^{2} dy \text{ where C is a parabolic arc given by } r(t) = \langle t, 1 t^{2} \rangle, -1 \le t \le 1$ $\int_{C} \langle t t^{2} \rangle dx + \langle t \rangle^{2} \langle -2t \rangle dt = comparts$

Green's Theorem

a) Use Green's theorem to find $\int_C F \cdot dr$ where $F(x, y) = \langle y^3, x^3 + 3xy^2 \rangle$ and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations, or use Maple)

computations, or use iviapie)

Coosed corner & Fred - Outh Day

Outh Day

- SJ [J2con20] rd-d7

calculate

b) Evaluate $\iint dA$ where R is the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ by using a vector field $F(x, y) = \langle -\frac{y}{2}, \frac{x}{2} \rangle$ and the boundary C of the ellipse R. Note that we did this in class, it is a very special application of Green's theorem.

- Evaluate the following integrals. You can use any theorem that's appropriate:
 - c) $\int 2xyzdx + x^2zdy + x^2ydz$ where C is a smooth curve from (0,0,0) to (1,4,3) ree previous examples
 - d) $\int ydx + 2xdy$ where C is the boundary of the square with vertices (0,0), (0,2), (2,0), and (2,2)

Queen: SS(2-1)dA= oner(59mm)=4

e) $\int_C xy^2 dx + x^2 y dy$, where C is given by $r(t) = \langle 4\cos(t), 2\sin(t) \rangle$, t between 0 and 2 Pi.

Green, conservation vector hold: = 0

10. Prove that if $F(x, y, z) = \langle M(x, y, z), N(x, y, z), P(x, y, z) \rangle$ is any vector field where M, N, P are twice continuously differentiable then div(curl(F)) = 0

just by it, it will work out

Use Green's Theorem to prove that integrals of a conservative vector fields over closed curves are zero (assuming that the closed curve encloses a simply connected region and all conditions of Green's theorem are satisfied).

Q thron credit...