7a. Chain Rule: Find the following derivatives of the (sometimes implicitly defined) functions:
a) If $z=x^{3} y+3 x y^{4}$ and $x=\sin (2 t)$ and $y=\cos (t)$, find $\frac{\partial z}{\partial t}$ at $t=0$ at $f_{2} 0$ we have $x(0)=0, y(0)=1$

$$
\frac{\partial t}{\partial t^{2}} \frac{\partial \vec{x}}{\partial x} \frac{\partial x}{\partial f}+\frac{\partial z}{\partial \vec{y}} \frac{\partial y}{\partial f^{2}}=\left(3 x^{4} y+3 y^{4}\right) \frac{\partial x}{\partial t}+\left(x^{2}+V x y^{3}\right) \frac{\partial y}{\partial x}
$$

$$
\frac{\partial x}{\partial t}=2 \cos (2 t) \text { and } \frac{\partial y}{\partial t^{3}}-\sin (t)
$$

Thus, at to, $\left.\left.\frac{\partial z}{\partial 4}\right|_{t=0}=\left(3 \cdot 0 \cdot 1+3 \cdot 1^{4}\right) 2+(0+0) \cdot 0=6\right)^{84}$
b) If $x^{3}+y^{3}=6 x y$ defines y as a function of x implicitly, find $\frac{\partial y}{\partial x}$

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x^{3}+y^{3}\right)=\frac{\partial}{\partial x}(6 x y) \Leftrightarrow 3 x^{2}+3 y^{2} \frac{\partial y}{\partial x}=6 y+6 x \frac{\partial y}{\partial x} \\
& \Rightarrow \quad 3 x^{2}-6 y=6 x \frac{\partial y}{\partial x}-3 y^{2} \frac{\partial y}{\partial x} \\
& \Rightarrow \quad \frac{3 x^{2}-6 y}{6 x-3 y^{2}}=\frac{\partial y}{\partial x}
\end{aligned}
$$

c) Let $z=e^{x} \cos (y)$ and $x=s \cdot t$ and $y=\sqrt{s^{2}+t^{2}}$, find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$
skip porn now
d) Find the rate of change of y with respect to t of $x^{2}+y^{2}+z^{2}=1$ for $t=1$, assuming that x, y, and z are all functions of t and that $x(1)=1, y(1)=2, z(1)=3$, and $x^{\prime}(1)=0$ and $z^{\prime}(1)=1 / 2$

$$
\begin{align*}
& 2 x x^{\prime}+29 y^{\prime}+277^{\prime}=0 \tag{3}\\
& \Rightarrow 2.10+2-2 \cdot \frac{\partial y}{\partial 7}+x \cdot 3 \cdot \frac{1}{2}=0 \\
& \frac{\partial y}{\partial \psi^{2}}+\frac{3}{4}
\end{align*}
$$

