Calc 3, Assignment 30

- 1. Please state:
 - a) What is Green's Theorem?
 - b) What is Gauss' Theorem? What is its alternate name?
 - c) For what type of surface can you apply the Divergence theorem?
- a) Find the following surface areas:
 - a) of the plane z = 2 x y above the rectangle $0 \le x \le 2$ and $0 \le y \le 3$
 - b) of the cylinder $z = 9 y^2$ above the triangle bounded by y = x, y = -x, and y = 3
 - c) of the surface $z = 16 x^2 y^2$ above the circle $x^2 + y^2 \le 9$
- 3. Evaluate the following **3D volume integrals:**
 - a) $\iiint_B xyz^2 dV$, where B is the rectangular box given by $\{0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$
 - b) $\iiint_E z \, dV$, where E is the solid tetrahedron bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 1

c)
$$\iiint_E \sqrt{x^2 + z^2} \, dV$$
, where E is the region bounded by $y = x^2 + z^2$ and $y = 4$

- 4. Find the following line integrals. You may use Maple to help you out.
 - a) Find the surface integral $\iint_{S} x 2y + zdS$, where S is the surface z = 10 2x + 2y such that x is between 0 and 2 and y is between 0 and 4.
 - b) $\iint_{S} (x+z) dS$ where S is the first-octant portion of the cylinder $y^2 + z^2 = 9$ between x = 0 and x = 4
 - c) The flux of the vector field $\vec{F}(x, y, z) = \langle x, y, z \rangle$, where S is the portion of the surface z = 10 2x 2y between the coordinate planes.
 - d) The flux of the vector field $F(x, y, z) = \langle x, y, z \rangle$ through the surface given by potion of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane. Note that this surface is *not* closed.
 - e) Evaluate the flux integral $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} dS$ where $F(x, y, z) = \langle z^2, x^2, y^2 \rangle$ and S is the closed surface given by $z = 4 x^2 y^2$ above the xy-plane together with the "lid" z = 0.
 - f) Evaluate the flux integral $\iint_{S} \vec{F} \cdot \vec{n} \, dS$ where $F(x, y, z) = \langle x, y, z \rangle$ and S is $x^2 + y^2 + z^2 = 4$