

<u></u>
Line Integrals of Vector Fields:
Suppose F is a vector field on a smooth curve C,
defined via 7 (t), as + Eb. Then he line integral
of Follows C io:
•
(= 12 (= 1 m m) = 111 H
(+ · d+ · (x(1), y(1)) - +·(1) dt
Note: 0 + C
(* 12 = ((M N) · (1/4/4/4) •
) W. (\(\cdot \) \(\cdot \) \(\cdot \)
Mole: St wir = S(M, N). (dx, dy).
(Molx + Noln = (Molx + Noln.
S Molx + Nely = S Melx + S Noly
2

Ex. Find work required to more particle from (2,0,0) to (3,4,5) through force field $f \cdot (y, z, x)$
Ned & how: while pulk how (2.00) & (345)? W= SF di = Sydx+88y+Xd8=
= 5 4+ 1d+ + 5+ 4nd+ (2++) J. M
C: +(1/= D++(6-0) . (5'00)++(1'+'2)=(5++'41'2+) 1+(0')

Finalisate
$$\int_{C} y^{2} dx - 2x dy$$

onal interprete it as work.

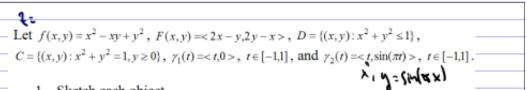
The $T = (y^{2}, -2x)$; then T count to compute

$$\int_{C} T dx = \int_{C} y^{2} dx - 2x dy = \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx - 2x dy = \int_{C} (-1) dx - 2x dy + \int_{C} (-1) dx -$$

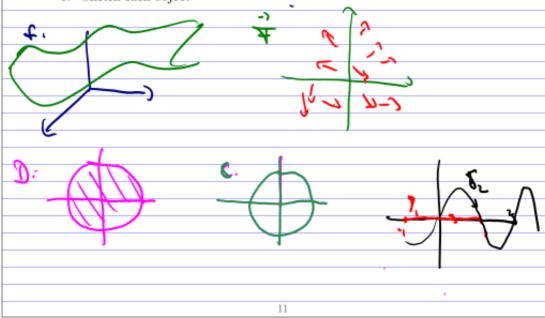
Fundamental Theorem of Line Interpols:
Suppose is a conservative vetor hild. Then
(r(a)) = f(r(b)) - f(r(a)) = petential ad enl-
where I in the potential of F, i.e. Of = F
and T:[0,5)-1 12 , r(1)= (x(H,y(H)), 1=n to 5
Note: Cooks easy, but you need to know the potential function!
7

Ex: Find work done by gravitational field

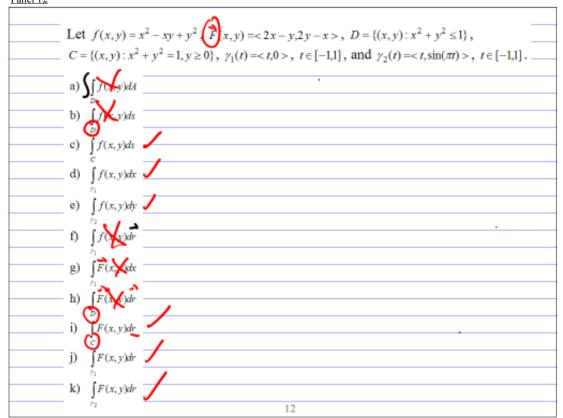
\(\vec{\frac{1}{2}} = -\frac{m\frac{1}{2}}{\pi + \pi 3} \vec{\frac{1}{2}} \quad \text{moving particle from }

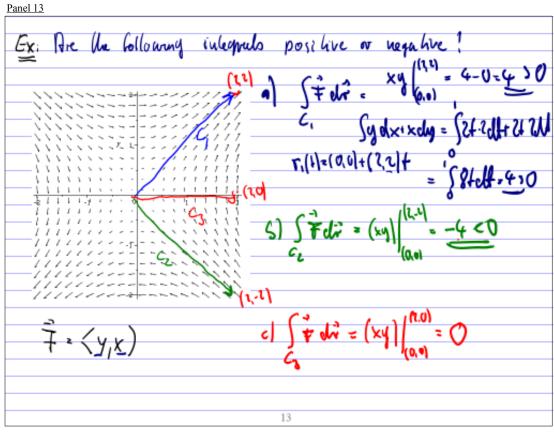

\((3.4.12) \quad (2.2.0).
\(\text{Note: no peath in girm! Work can not elepant on part!}

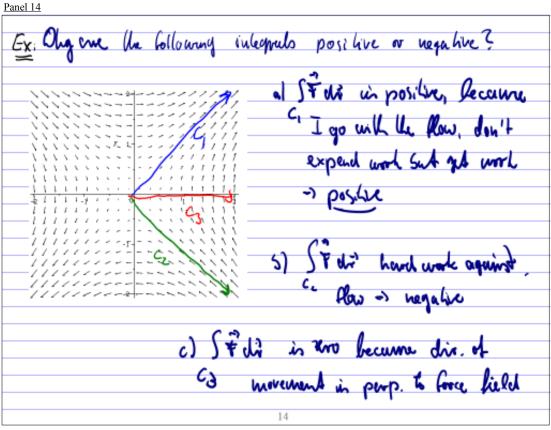
\(\text{Thin. } \vec{\frac{1}{2}} \text{def be conservable:} \\

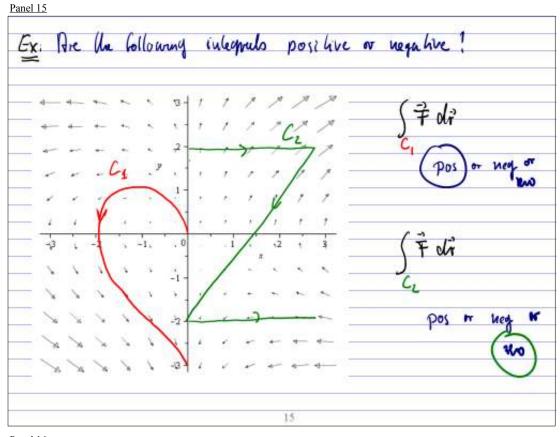

\(\text{Thin. } \

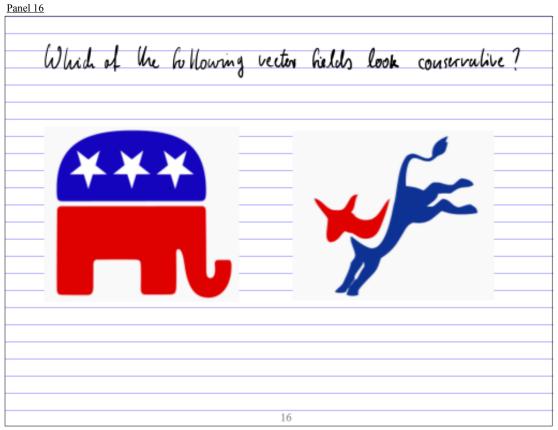
Panel 10	
Integral Soup	<i>\(\mu\)</i>
\$ 1(x) dx Calc 1	[+ (>14) ds = \$ 1 (x(H), MU)) /x 7
SS L(x,y) of Pussing	er & thy dx- Standing wold
SSS f(x,y,+) dV Fusino	9 (1(x/y) dy 2 (y'dt
) ds = ~ \(\(\lambda'\)\(\lamb	[F d? = SMdx+ SNdy
leugh of conne	
	10






1. Sketch each object




Panel 12

