Calc 3, Assignment 30

- 1. Please state:
 - a) What is Green's Theorem?
 - b) What is Gauss' Theorem?
 - c) For what type of surface can you apply the Divergence theorem?
- 2. Find the following surface areas:
 - a) of the plane z = 2 x y above the rectangle $0 \le x \le 2$ and $0 \le y \le 3$
 - b) of the cylinder $z = 9 y^2$ above the triangle bounded by y = x, y = -x, and y = 3
 - c) of the surface $z = 16 x^2 y^2$ above the circle $x^2 + y^2 \le 9$
- 5. Find the following line integrals. You may use Maple to help you out.
 - a) $\int_C x + y^2 ds$ where C is a line segment given by $r(t) = \langle 3t, 4t \rangle, \ 0 \le t \le 1$
 - b) $\int_C F \cdot dr \text{ where } F(x, y) = \langle 2xy^3 2xy + 1, 3x^2y^2 x^2 \rangle \text{ and } C \text{ is the lower half of the unit circle, from (-1,0) to (1,0).}$
 - c) $\iint_{R} dS$, where S is the portion of the hemisphere $f(x, y) = \sqrt{25 x^2 y^2}$ that lies above the circle $x^2 + y^2 \le 9$
 - d) Find the surface integral $\iint_{S} x 2y + z dS$, where S is the surface z = 10 2x + 2y such that x is between 0 and 2 and y is between 0 and 4.
 - e) $\iint_{S} (x+z)dS$ where S is the first-octant portion of the cylinder $y^2 + z^2 = 9$ between x = 0 and x = 4
 - f) The flux of the vector field $\vec{F}(x, y, z) = \langle x, y, z \rangle$, where S is the portion of the surface z = 10 2x 2y between the coordinate planes.
 - g) Find the flux of the vector field $F(x, y, z) = \langle x, y, z \rangle$ through the surface given by potion of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane. Note that this surface is *not* closed.
 - h) Evaluate the flux integral $\iint_{S} \vec{F} \cdot \vec{n} \, dS$ where $F(x, y, z) = \langle x, y, z \rangle$ and S is $x^2 + y^2 + z^2 = 4$