Quiz

1. Answer the following questions and provide a reason for your answer:
 a) Can you apply the Fundamental Theorem of line integrals to the function \(f(x, y, z) = xy \sin(z) \cos(x^2 + y^2) \) ?

 b) Can you apply the Fundamental Theorem of line integrals to the vector field \(\vec{F}(x, y) = <6xy^2 - 3x^2, 6x^2y + 3y^2 - 2x^3> \) ?

 c) Can you apply Green’s theorem to a curve \(C \), which is a straight line from \((0,0,0) \) to \((1,2,3)\)?

2. Evaluate the following integrals, using whatever method/shortcut you think is most appropriate (including Maple):
 a) \(\int_C \vec{F} \cdot d\vec{r} \) where \(\vec{F}(x, y) = <y, x^2> \) and \(C \) is the curve given by \(\vec{r}(t) = <4 - t, 4t - t^2>, \quad 0 \leq t \leq 3 \)

 b) \(\int_C \vec{F} \cdot d\vec{r} \) where \(\vec{F}(x, y) = <e^t \cos(y), -e^t \sin(y)> \) and \(C \) is the curve \(\vec{r}(t) = <2\cos(t), 2\sin(t)>, \quad 0 \leq t \leq 2\pi \)

 c) \(\int_C 2xyz \, dx + x^2z \, dy + x^2y \, dz \) where \(C \) is some smooth curve from \((0,0,0) \) to \((1,4,3)\)

 d) \(\int_C y^3 \, dx + (x^3 + 3xy^2) \, dy \) where \(C \) is the path from \((0,0) \) to \((1,1)\) along the graph of \(y = x^3 \) and from \((1,1)\) back to \((0,0)\) along the graph of \(y = x \).

 e) \(\int_C y \, dx + 2 \, x \, dy \) where \(C \) is the boundary of the square with vertices \((0,0), (0,2), (2,0), \) and \((2,2)\)