Panel 1

Conservative Vector Fields

Conservative \(F \) \(\Rightarrow \) \(\nabla \cdot F = 0 \) \(\Rightarrow \) \(\text{curl}(F) = 0 \) \(\Rightarrow \) \(\frac{\partial N}{\partial y} = \frac{\partial M}{\partial x} \)

Fundamental Theorem of Line Integration: \(F \) conservative

\[\int_C \nabla \phi \cdot dl = \phi(B) - \phi(A) \]

\(\int_C \nabla \phi \cdot dl \)

\(\int_C \nabla \phi \cdot dl = 0 \)

Panel 2

Find a conservative vector field that has the given potential:
\(f(x, y, z) = \sin(x^2 + y^2 + z^2) \)

Find \(\text{div}(\nabla \cdot F) \) and \(\text{curl}(F) = \nabla \times F \)
\(F(x, y, z) = \langle x^2z, y^2x, x + 2z \rangle \)

Evaluate \(\int_C (x - y)dx + xdy \) if \(C \) is the graph of \(y^2 = x \) from (4, -2) to (4, 2)

Find the work done by \(F(x, y, z) \) along the curve \(\langle t, t^2, t^3 \rangle \) from (0, 0, 0) to (2, 4, 8), where
\(F(x, y, z) = y, y, x \)

Check which of the following vector fields is not conservative.
\(F(x, y) = \langle 3x^2y + 2x^3 + 4y^3 \rangle \)
\(F(x, y) = \langle e^x, 3 - e^x \sin(y) \rangle \)
\(F(x, y, z) = \langle 8xz, y^2, 4x^3 - 9y^2z^3 \rangle \)

Show that the line integrals are independent of the path, and find their value:
\[\int_{(1, 1)}^{} (y^3 + 2xy)dx + (x^3 + 2xy)dy \]
\[\int_{(-2, 1)}^{} (6xy^3 + 2x^2)dx + (9x^2y^2)dy + (4xz + 1)dz \]

Page 1 of 8
Panel 3

\[
\int_C \nabla \cdot \mathbf{F} \, dx = \int_R \nabla \times \mathbf{F} \cdot d\mathbf{A} = \int_R \left(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \right) \, dA
\]

Panel 4

Green's Theorem: Let \(R \) be a region in \(xy \)-plane with a piecewise smooth, non-intersecting, and positively oriented boundary curve \(C \). \(\mathbf{F} = (M, N) \) is a smooth vector field. Then:

\[
\int_C \mathbf{F} \cdot d\mathbf{C} = \int_R \left(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \right) \, dA
\]

Note: If \(\mathbf{F} \) is conservative:

\[
\int_R \left(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \right) \, dA = 0
\]

2D Theorem: There is a 2D version - Cauchy
Panel 5

Ex: Evaluate \(\int_C xy \, dx + x^3 \, dy \), where \(C \) is as shown.

Method 1: old way

\[
\int_0^2 \int_0^{x^2} \left(xy \ dx + x^3 \ dy \right) = \int_0^2 \int_0^{x^2} 2x \ dy \ dx + \int_0^2 \int_0^{x^2} 4x \ dy \ dx + \int_0^2 \int_0^{x^2} 8x^3 \ dy \ dx = -\frac{40}{15}
\]

Method 2: Green's Theorem

\[
\int_C xy \, dx + x^3 \, dy = \int_R \left(\frac{\partial}{\partial y} (x^3) - \frac{\partial}{\partial x} (xy) \right) \, dA = \int_R \left(3x^2 - x \right) \, dA = \int_0^2 \int_0^{x^2} 3x^2 - x \, dy \ dx = \int_0^2 \left[\frac{3x^3}{3} - \frac{x^2}{2} \right]_{y=0}^{y=x^2} \, dx = -\frac{40}{15}
\]

Panel 6

Ex: Evaluate \(\int_C 2xy \, dx + (x^2 + y^2) \, dy \), \(C \) is \(4x^2 + 9y^2 = 36 \)

Old way: \(r(t) = \left< \frac{2}{3} \cos(t), \frac{2}{3} \sin(t) \right> \) maybe...?

Green's Theorem:

\[
\int_C 2xy \, dx + (x^2 + y^2) \, dy = \iint_R 2x - 2x \ dA = 0
\]

Way funnier
Panel 7

\[\text{Ex: Find } \int_{\gamma} M \, dx + N \, dy \]

where \(\gamma \) is the triangle \((0,0), (1,0), (0,1)\).

Old way: 3 integrals

New way: \(\int_{\gamma} (2y \cos y^2 + 3 - 2x \cos y^2 - 1) \, dA = \int_{\gamma} 2 \, dA = \int_{\gamma} 2 \cdot \text{area}(\gamma) = 2 \cdot \frac{1}{2} = 1 \)

Panel 8

Evaluate \[\int_{C} M \, dx + N \, dy \]

where \(C \) is the circle \(x^2 + y^2 = 9 \).

Old way: one integral, and \(x(t) = 3 \cos t, \quad y(t) = 3 \sin t \)

Green's Theorem: \(\int_{\gamma} (7 - 3) \, dA = 4 \int_{\gamma} dA = 4 \cdot 9 = 36 \pi \)
Theorem: If D is a region enclosed by a curve C then \[
\text{area}(D) = \frac{1}{2} \oint_C x \, dy - y \, dx \]

Proof: \[
\begin{align*}
\oint_C x \, dy - y \, dx &= \iint_D \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right) \, dx \, dy \\
&= - \iint_D 1 - (-1) \, dx \, dy \\
&= 2 \int_0^1 \int_{x_1}^{x_2} dx \, dy = 2 \text{ area}(D)
\end{align*}
\]

Panel 9

Example: Find area enclosed by \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

Area of ellipse \(r(t) = \langle a \cos(t), b \sin(t) \rangle \), \(t \in [0, 2\pi] \)

\[\begin{align*}
x(t) &= a \cos(t) \\
y(t) &= b \sin(t) \\
A &= \frac{1}{2} \oint_C x \, dy - y \, dx \\
&= \frac{1}{2} \int_0^{2\pi} a^2 \cos^2(t) dt + b^2 \sin^2(t) dt \\
&= \frac{1}{2} \int_0^{2\pi} (a^2 + b^2) dt \\
&= \frac{1}{2} (2\pi a^2 + 2\pi b^2) \\
&= \pi (a^2 + b^2)
\end{align*} \]

Area of circle: \(A = \pi r^2 \) \(\text{circum. of ellipse} = \frac{1}{2} (a + b) \)

Length of circle: \(L = \int_0^{2\pi} \sqrt{r'(t)^2 + (r(t))^2} \, dt \)

\[
\begin{align*}
r(t) &= \langle r \cos(t), r \sin(t) \rangle \\
L &= \pi r \approx \frac{2\pi R}{4} \end{align*}
\]
Panel 11

Review: Volume of sphere radius R?

$$x^2 + y^2 + z^2 = R^2 \Rightarrow z = \sqrt{R^2 - x^2 - y^2}$$

$$V = \iiint \sqrt{R^2 - x^2 - y^2} \, dV = \iiint_R \sqrt{R^2 - x^2 - y^2} \, dy \, dx$$

$$= 2\pi \int_0^R \left[\frac{1}{3} \left(R^2 - r^2 \right)^{3/2} \right]_0^R - \frac{2}{3} \pi \left(-R^2 \right)$$

$$= \frac{4}{3} \pi R^3$$

Panel 12

More Review: Surface area of a sphere radius R?

$$f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$S = \iint_S \, dS = \iint_R \sqrt{1 + \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \, dx \, dy$$

$$f_x = \frac{x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{y}{\sqrt{R^2 - x^2 - y^2}}$$

$$S = 4\pi R^2$$

<table>
<thead>
<tr>
<th>Volume</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>$2\pi r^2$</td>
</tr>
<tr>
<td>R^3</td>
<td>$4\pi r^2$</td>
</tr>
</tbody>
</table>

Hint project!
Panel 13

Evaluate \(\int_C y^2 \, dx + 3xy \, dy \) where \(C \) is the boundary of the region between \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 4 \).

Green's Theorem applies.

\[
\begin{align*}
\int_C y^2 \, dx + 3xy \, dy &= \int_{\Theta} 3y - 2y \, r \, dr \, d\theta \\
&= \int_0^1 \int_0^{2\pi} r \sin^2(\theta) \, r \, dr \, d\theta \\
&= 0
\end{align*}
\]

Panel 14

15. Evaluate \(\int_C 2(x + y) \, dx + 2(x + y) \, dy \), \(C \) curve from \((-2, 2)\) to \((4, 3)\).

Find potential \(\Rightarrow f(0) - f(2) \)

16. Find the work done by the force field \(F = <9x^2 y^2, 6x^3 y - 1> \) from \(P(0, 0) \) to \(Q(5,9) \).

\[
\int_{L} 9x^2 y^2 \, dx + 6x^3 y - 1 \, dy
\]

Find potential \(\Rightarrow f(5) - f(0) \)
18. Evaluate \(\int_C 2xydx + (x + y)dy \) where \(C \) bounds the region between \(y = 0 \) and \(y = 4 - x^2 \).

Long way or Green's

21. Evaluate \(\int_C \sin(y^2) - y^2)dx + (x^2 \cos(y^2) + 3x)dy \) where \(C \) is the boundary of the trapezoid with vertices (0, -2), (1, -1), (1, 1), and (0, 2).

Long way = \(\neq \) integrals

Green's Then