Sheets + Coordinate Systems

\[x^2 + y^2 = 1 \] base around y-axis

Vectors:
- add, subtract, length, visually
- dot prod, cross product, angles
- projection

Planes + Lines:
- parametric or scalar equations, intersections, distances, angles

Vector-valued functions:
- limits, derivatives, integrals
- tangents, unit tangent, normal, binormal, length, curvature

Motion in Space:
- velocity, speed, accel., normal + tangential
- comp. of accel., slinky problem

Formulas:

\[\theta = \cos^{-1}(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}) \]

\[\mathbf{v} = \mathbf{r}'(t) \]

\[v = \|\mathbf{r}'(t)\| \]

\[s = \int \|\mathbf{r}'(t)\| \, dt \]

\[T = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \]

\[N = \frac{\mathbf{r}''(t)}{\|\mathbf{r}''(t)\|} \]

\[\mathbf{B} = T \times N \]

\[k = \frac{\|\mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}''(t)\|^2}{\|\mathbf{r}'(t)\|^3} \]

Supporting plane: spanned by \(T \) and \(N \)

Osculating circle: circle in curve plane will

\[r = \int \|\mathbf{r}'(t)\| \, dt \]
Application of Motion

A baseball is hit 3 feet above ground at 100 feet per second and at an angle of Pi/4 with respect to the ground. Find the maximum height reached by the baseball. Will it clear a 10-foot high fence located 300 feet from home base?

\[r(t) = \]

\[\begin{align*}
 a(t) &= (0, -g) \\
 v(t) &= (v_{x0}, v_{y0}) = (\frac{100}{\sqrt{2}}, -g + \frac{100}{\sqrt{2}}) \\
 x(t) &= (100/\sqrt{2})t + \frac{1}{2}gt^2 + (100/\sqrt{2})t + 3
\end{align*} \]

1. Max height:
 \[y(t) = -\frac{1}{2}gt^2 + \frac{100}{\sqrt{2}}t + 3 \quad \text{max} \]
 \[y(t = 0) = 3 \]
 \[y(t) \text{ is max. height} \]

2. Does it clear a 10-foot wall at 300 feet?

\[\text{Wall: } x = \frac{100}{\sqrt{2}}t = 300 \Rightarrow t = \frac{300 \cdot \sqrt{2}}{100} = 3\sqrt{2} \]

\[\text{Height: } y(3\sqrt{2}) = -\frac{1}{2} \cdot 32 \cdot (3\sqrt{2})^2 + \frac{100}{\sqrt{2}} \cdot 3\sqrt{2} + 3 = 15 \]

\[= -16 \cdot 18 + 300 + 3 \]

HR!
Panel 5

True/False questions

1. \(r(t) = \langle t^3, 2t^2, 3t^3 \rangle \) is a line. \(< u_1, u_2, u_3 > \) lies in it. \(\text{Yes} \)

\[\frac{d}{dt} (v(t) \times w(t)) = v'(t) \times w(t) \] \(\text{No} \) my example

\[\frac{d}{dt} \|r(t)\| = \|r'(t)\| \] \(\text{No} \) my example

\[\|r(t)\| = 5 \] for all \(t \) \(\text{True} \)

\[\|r(t)\| = 5 \] for all \(t \) \(\text{True} \)

More about distances, planes, and vectors

Panel 6

Vectors: Suppose \(u = \langle 7, -2, 3 \rangle \), \(v = \langle -1, 4, 5 \rangle \), and \(w = \langle -2, 1, -3 \rangle \)

- Are \(u \) and \(v \) orthogonal, parallel, or neither?
- Find graphically and algebraically \(2u + 3v \) and \(u - v \)
- Find the angle between \(v \) and \(w \)
- Find \(u \cdot v \) (dot product), \(u \times v \) (cross product), \(u \cdot (v \times w) \), and \(||u|| \)

\[7 - 1 + 12 - 4 + 9 - 5 = -3 - 1 + 15 = 0 \]

Two vectors are parallel if \(c \mathbf{w} = \mathbf{v} \)

\[x \mathbf{v} = \langle -1, 4, 5 \rangle = \langle -2, 1, -3 \rangle \]

\[\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = 0 \]
Panel 7

Equation of line through \(P(1,2,3) \) and \(Q(4,5,1) \)

\[\mathbf{L} = (1,2,3) + t(3,3,-2) = \mathbf{P} + t\mathbf{PQ} \]

Equation of plane through \(P(1,0,2), Q(2,1,3), R(1,1,1) \)

\[\begin{align*}
 a(x-x_0) + b(y-y_0) + c(z-z_0) &= 0 \\
 \mathbf{a} \cdot \mathbf{n} &= 0 \\
 ax+by+cz+d &= 0
\end{align*} \]

Intersection of lines/planes

Panel 8

Distance

Find distance of \(P(3,1) \) to line \(2x-y = 1 \)

\[d = \frac{\mathbf{PQ} \cdot \mathbf{n}}{\|n\|} \quad \mathbf{n} = (2, -1) \quad \mathbf{Q} = (4, 1) \]

Find distance of \(P(1,0,3) \) to plane \(2x + 5y + z = 0 \)

same as above.
Panel 9

If \(r(t) = \langle 4t, t^2, t^3 \rangle \), find \(r'(t) \), \(r''(t) \), \(\frac{d}{dt} \|r(t)\| \)

If \(r(t) = \langle e^t, 3t^3, \frac{3}{6t} \rangle \) some curve, find \(\int_1^2 r(t) \, dt \) / \(t \)

If \(r(t) = \langle t, \frac{1}{t} \rangle \), find \(T(t) \), \(N(t) \), \(a_t \) and \(a_n \)

If \(r(t) = \langle 3 + t, 2t, 1 - 4t \rangle \), find \(N \). Explain.

\(r(\frac{1}{4}) \in \langle 4, \frac{1}{16}, \frac{1}{64} \rangle \), \(\|r\| = \sqrt{1 + \left(\frac{1}{4}\right)^2} \sqrt{1 + \left(\frac{1}{16}\right)^2} \)

\(T = \frac{1}{\sqrt{1 + \frac{1}{16}}} \langle 1, -\frac{1}{4} \rangle \Rightarrow N = \frac{1}{\sqrt{\frac{1}{16} + 1}} \langle \frac{1}{4}, 1 \rangle \)

Panel 10

If \(r(t) = \langle 3 - 8t, 4t, t \rangle \) find length of curve as \(t \in [0, 1] \)

\[s = \int_0^1 \|r'(t)\| \, dt = \int_0^1 \sqrt{\langle 3 - 8t, 4t, t \rangle, \langle 3 - 8t, 4t, t \rangle} \, dt = \int_0^1 \sqrt{6} \, dt = \sqrt{6} \]

be prepared for in class and quiz.
Panel 11

Find curvature of \(\mathbf{r}(t) = <t, t^2, \frac{t^3}{6}> \) at \(t = 1 \)

\[\chi = \frac{\| \mathbf{r}' \|}{\| \mathbf{r}' \times \mathbf{r}'' \|} \]

\[\mathbf{r}'(t) = <1, 2t, \frac{t^2}{2}> \quad \Rightarrow \quad \mathbf{r}'(1) = <1, 2, \frac{1}{2}> \]

\[\mathbf{r}''(t) = <0, 2, \frac{t}{2}> \quad \Rightarrow \quad \mathbf{r}''(1) = <0, 2, \frac{1}{2}> \]

Panel 12

Picture Problems:

7. Picture: Sketch the circle that fits the graph below the best at the points \(x = 0 \) and \(x = 3 \). At which of the two points is the curvature smaller?
Panel 13

Panel 14

Panel 13

Picture Problems

Sketch T, N, u, u_t, and u_N at $t = 3$

Panel 14

Picture Problems

Match graphs to functions

sinkers, spirals, horseshoe, etc.

1. B

2. A

3. C

$0 \ x(t) < \cos(\theta(t))$ $0 \ y^2 + x^2 = 1$
Panel 15

Story Problem

What is the maximum height and range of a projectile fired at a height of 3 feet above the ground with an initial velocity of 900 feet/sec and at an angle of 45 degrees above the horizontal?

Panel 16

Proof:

Prove the following facts:
1. Show that $u \times v = -(v \times u)$
2. Show that $u \cdot (v \times u) = 0$
3. Show that if $y = f(x)$ is a function that is twice continuously differentiable, then the curvature of f at a point x is $K = \frac{|f''(x)|}{(1 + [f'(x)]^2)^{3/2}}$
4. Prove that the curvature of a line in space is zero.

$y = \beta(x) \Rightarrow v(t) = <t, \beta(t), 0>$

$\frac{\|v'(x) \times v''(x)\|}{\|v'(x)\|^3}$