Math 2511: Calc III - Practice Exam 3

1. State the meaning or definitions of the following terms:

a) Vector field, Conservative vector field, Potential function of a vector field

b) curl and divergence of a vector field F

c) 
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 where F is a two or three dimensional vector field
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, where F is a three-dimensional vector field

i) What does it mean when a “line integral is independent of the path”?

j) State the Fundamental Theorem of Line Integrals

k) Please state Green’s Theorem. Make sure to know when it applies, and in what situation it helps

l) Please state the Divergence Theorem. Make sure to know when it applies, and in what situation it helps

m) Please state Stokes’ Theorem. Make sure to know when it applies, and in what situation it helps

2. Below are four algebraic vector fields and four sketches of vector fields. Match them.
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3. Are the following statements true or false:

a) If the divergence of a vector is zero, the vector field is conservative.

b) If 
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 is a conservative vector field then 
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c) If a line integral is independent of the path, then 
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 for every path C

d) If a line integral is independent of the path, then 
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 for every closed path C

e) If a vector field is conservative in a disk then 
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f) 
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g) 
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 denotes the volume of the region R

h) Can you apply the Fundamental Theorem of line integrals for the function 
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i) Can you apply the Fundamental Theorem of line integrals for the vector field 
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j) Can you apply Green’s theorem for a curve C, which is a straight line from (0,0,0) to (1,2,3)?

k) Can you apply the Divergence theorem for a closed surface S that lies in the xy-plane

l) Can you apply Stoke’s theorem for a closed surface, i.e. a surface that bounds a solid object in space?

4. Suppose that 
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 is some vector field.

a) Find div(F)

b) Find curl(F)

c) Find curl(curl(F))

d) Find div(curl(F))
e) grad., div., and curl of the vector field if appropriate 
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f) grad., div., and curl of the vector field if appropriate 
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g) grad., div., and curl of the vector field if appropriate 
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5. Decide which of the following vector fields are conservative. If a vector is conservative, find its potential function
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c) 
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d) 
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e) 
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6. Evaluate the following integrals:

a) 
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 where C is a line segment given by 
[image: image43.wmf]>

=<

t

t

t

t

r

3

,

2

,

)

(

, 
[image: image44.wmf]1

0

£

£

t


d) 
[image: image45.wmf]ò

×

C

dr

F

 where 
[image: image46.wmf]>

=<

2

,

)

,

(

x

y

y

x

F

 and C is the curve given by 
[image: image47.wmf]>

-

-

=<

2

4

,

4

)

(

t

t

t

t

r

, 
[image: image48.wmf]3

0

£

£

t


e) 
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 where C is a parabolic arc given by 
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 where S is the first-octant portion of the cylinder 
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g) Find the flux of the vector field 
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 through the surface given by potion of the paraboloid 
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 that lies above the xy-plane. Note that this surface is not closed.

h) In the previous problem, would it be easier if we considered the same surface as before, but joined with the disk of radius 2 in the xy plane so that the surface would be a closed surface?

7. For the following line integrals there is a short-cut you can use to simplify your computations (but justify your shortcut by quoting the appropriate theorem)
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 and C is the curve 
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b) 
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 where C is some smooth curve from (0,0,0) to (1,4,3)
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 where C is the path from (0,0) to (1,1) along the graph of 
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8. Green’s Theorem

a) Use Green’s theorem to find 
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 and C is the circle with radius 3, oriented counter-clockwise (You may need the double-angle formula for cos somewhere during your computations)

b) Evaluate 
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9. Evaluate the following integrals. You can use any theorem that’s appropriate:
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i) If 
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10. Prove the following:

a) If 
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b) A function (not a vector field) 
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c) Use Green’s Theorem to prove that integrals of a conservative vector fields over closed curves are zero (if the closed curve encloses a simply connected region and all conditions of Green’s theorem are satisfied).
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