Exam 2 – Practice
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This practice exam contains practice problems for exam 2. The real exam will have fewer problems. Don’t forget to work through “Worksheets 7” and “Worksheet 8”. For additional practice, do the problems written on the right …
Additional problems may be posted soon, so please check back here before Tuesday evening.

1. Please state what the following terms mean:
a) What is an “infinite sequence”

b) What is an “infinite series”

c) What is the N-th partial sum

d) The series 
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 converges to the limit L
e) What is the Divergence Test?

f) What is an “alternating series”

g) What is “absolutely convergent”

h) What is “conditionally convergent”

i) What is a Power Series?

j) What is a Taylor Series?

2.
For the following sequences, please list the first 4 terms and determine what the limit of the sequence might be. If the sequence does not have a limit, please say so.
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 where 
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   (tricky)

2. Determine whether each of the following series converge or diverge, or conditionally converges if applicable. Please state carefully which test you are using to support your conclusion. If possible, find the limit of the series
a) 
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c)
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b) 
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c) 
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d) 
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e) 
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f) All series on “Worksheet 7”

3. Find the radius of converges for the following power series
a) 
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b) 
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c) 
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d) All power series on Worksheet 8

4. Recall that 
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. Use that fact to determine the power series centered at the origin for:
a) 
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b) 
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c) 
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d) All on Worksheet 8
5. Find the Taylor series for the following functions, all to be centered at the origin.

a) 
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b) 
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c) 
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d) 
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 (first 3 terms only)

e) All series on Worksheet 8

6. Suppose the indicated function has a power series around 0. Find the value of the specified term:

a)
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b)
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7. The series 
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 clearly converges. What number does it converge to? What about the series 
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8. Find a Taylor series for the function 
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. Finally, use the first 5 terms of that series to get an approximate value for 
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