Exam 2 –Practice
1. Please state what the following terms mean:
a) Length of a curve, arc length
b) Moment about x or y axis

c) Center of Gravity

d) What is an “infinite sequence”

e) Increasing, decreasing, and bdd sequences + related theorems

f) What is an “infinite series”

g) What is the N-th partial sum

h) The sequence 
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i) The series 
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j) What is the Divergence Test?

k) What is the Limit Comparison Test, and how about the Ratio Test

l) What is a geometric series, a p-series

m) What is the harmonic series?

n) What is a Power Series?

o) What is a Taylor Series? A McLaurin series?
2. Arc Length question: Find the length of the curve 
[image: image3.wmf]2

/

3

6

1

x

y

+

=

 for 0 < x < 1
Also review Page 385: #5, 6, 27
3. Find the center of mass of the lamina of uniform density 
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 bounded by the graph of 
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. You might need the following formulas:


[image: image7.wmf]dx

x

f

M

x

ò

=

2

)]

(

[

2

r



[image: image8.wmf]dx

x

f

x

M

y

ò

×

=

)

(

r



[image: image9.wmf]dx

x

f

m

b

a

ò

=

)

(

r



[image: image10.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

m

M

m

M

y

x

x

y

,

)

,

(


Also review Page 399: 37, 38, 39
4.
For the following sequences, please list the first 4 terms and determine what the limit of the sequence might be. If the sequence does not have a limit, please say so.
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5. Questions about inc/dec/bdd sequences TBD 

6. Determine whether each of the following series converge (absolutely) or diverge. Please state carefully which test you are using to support your conclusion. If possible, find the limit of the series
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a) All series on “Worksheet”

7. Find the radius of converges for the following power series
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All power series on “Worksheet”
8. Recall that 
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. Use that fact to determine the power series centered at the origin for:
a) 
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d) All on “Worksheet”
9. Find the Taylor series for the following functions, all to be centered at the origin.

a) 
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d) 
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e) All series on “Worksheet”
10. Suppose the indicated function has a power series around 0. Find the value of the specified term:

a)
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11. The series 
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 converges (why). What number does it converge to? What about 
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12. Find a Taylor series for the function 
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. Finally, use the first 5 terms of that series to get an approximate value for 
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