
Last Time.		
f(x)= ex	and	f (x) = ax
logs(x) = y =>	e	3× - 27 194 (23) = X = J
$\frac{dx}{d} C'(x) = \frac{x}{1}$		
	1	

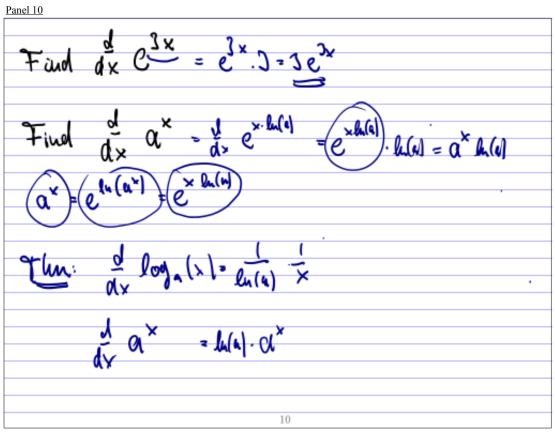
Find the derivatives of. $f(x) = \ln (2 + \sin(x)) = f(x) = \frac{1}{2+\sin(x)} \cos(x)$ $f(x) = \ln (x^{3}+1) \qquad f(x) = \frac{1}{x^{3}+1} \cdot 2x^{2}$ $h(x) = \ln (\cos(x)) \qquad f(x) = \frac{1}{x^{3}+1} \cdot 2x^{2}$ $h(x) = \ln (\cos(x)) \qquad f(x) = \frac{1}{x^{3}+1} \cdot 2x^{2}$ $h(x) = \ln (\cos(x)) \qquad f(x) = \frac{1}{x^{3}+1} \cdot 2x^{2}$ $h(x) = \ln (\cos(x)) \qquad f(x) = \frac{1}{x^{3}+1} \cdot 2x^{2}$ $h(x) = \ln (x+1) = \frac{1}{x^{3}+1} \cdot 2x^{2}$ $f(x) = \ln (x+1) = \frac{1}{x^{3}+1} \cdot 1$ $f(x) = \frac{1}{x^{3}+1} \cdot 2x^{2}$

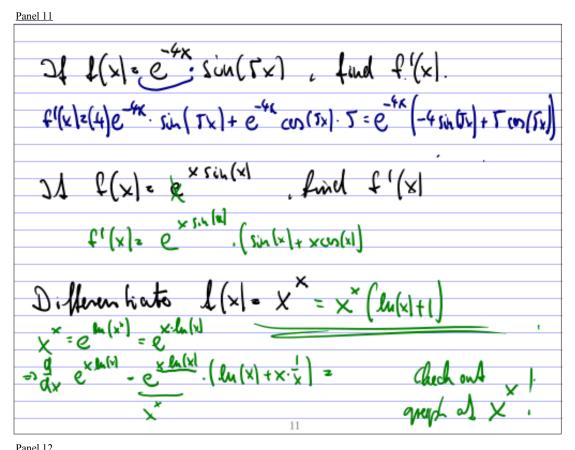
Panel 4

(3) Find the following derivatives

a) f(x) = ln(2x)5) $f(x) = \sqrt{ln(sin(x))}$

Panel 5
Find d log s(x) = d in h(s)= in x
log, (x) = y = x /ln
ly (51)=lu(x)
y lu(t) = lu(x)
Y = Ou(x)
Change of Bara formula: logs (x) = ln(x)
q× lod (x) = ln(2). χ (2. χ(2))


Panel 6


Differentiate
$$q = \frac{x^{3/4} \sqrt{x^{2}+1}}{(3x+2)^{5}}$$
 $\ln(\gamma) = \ln(\frac{x^{3/4} \sqrt{x^{2}+1}}{(3x+2)^{5}}) = \frac{1}{(3x+2)^{5}}$
 $-\ln(x^{3/4} + \ln(\sqrt{x^{2}+1}) - \ln(3x+2)^{5}) = \frac{1}{(3x+2)^{5}}$
 $-\frac{2}{4}\ln(x) + \frac{1}{6}\ln(x^{2}+1) - \Gamma\ln(3x+2)$
 $\frac{1}{4}\ln(\gamma) = \frac{3}{4} + \frac{1}{2} +$

Logar Music Differentiation	
$\lambda = \frac{1}{(x-3)_5 \cdot \cos_3(x)}$	
ln(y/= 2 ln(x-7) + 3 ln (x) - 5 l/(en(x) - 2 ln)	x) (qx \
in A1 = x-4 - 3 col(x) - 2 touls et 10 - 1x	
y'z(). (
7	

Derivative of Exp. Function:
Jecost: \(\frac{1}{4} \left(\frac{1}{4} - \left(\text{x} \right) = \frac{1}{4} \left(\frac{1}{4} - \left(\text{x} \right) \)
-f-1(x)=ex = f(x)= ln(x) => f'(x)====================================
"think; of bu is low, of e is itself"

	San James San X	
=> d= h(>)	For him. Say know of ex=ex	
W.X	=> d× h(>)	
0-1(-) 0 (-) ×	0-1(-) 0 (-) ×	
f-1(x)= h(x) => 1(x)=ex	•	
01× 1-1(x)- (1)(1-(x)) = 6p(x) = x	2-1(x)- (1)(2-1(x)) = / (h(h) = x	
V(x (-1,-1) C		
9	9	

Exp. Growth + Decay
Law of natural growth or decay:
rate of change is proportional to amount of stall
Think population - the more animals you have,
Ile faster lay cultiply! It y (1) in amount of stuff at here I, the
dy = k.y Newly, will of y. (6) y
nkx dow. Dokt
y = Pekx dy = Rei = ky (y=Pekt
12