Panel 1

Science Calculus 1

Berndt Wachsmuth

Office: Science Building 610D

wachsmuth@shu.edu

Web: pirate.shu.edu/~wachsmuth

Please download and install Dyalog

Server: vision.dyknow.com / username

Server ID: shu.edu / password = username

Panel 2

Grading

Quizzes every week: 100 points
3 exams: 300 points
1 final: 100 points
Computer assignments: 100 points

600 points

Course Content:

- Functions, limits, continuity
- Derivatives
- Applications
- Integration
- Inverse functions
Panel 3

Functions

Def. A function is a rule that assigns to each element \(x \) in a set \(A \) exactly one element \(y \), or more commonly \(y = f(x) \), in a set \(B \).

Note: The set \(A \) is called: **DOMAIN**

The set \(B \) is called: **RANGE**

\[f(x) = x^2 \quad \text{Dom} = \mathbb{R} \]

\[g(x) = \frac{1}{x-1} \quad \text{Dom} = \mathbb{R} - \{0\} \]

\[k(x) = \sin \quad \text{Dom} = \mathbb{R} \]

Panel 4

- Light bulb
- **f(x) = \frac{1}{x}**
- **Domain:** \(\mathbb{R} - \{0\} \)
- **Range:** \(\mathbb{R} - \{0\} \)
Panel 5

$g(x) = ?$

Domain: \mathbb{R}

Range: $\{ y \geq -2 \}$

$[-2, \infty)$

\uparrow incl. \hspace{1cm} \uparrow excl.

Panel 6

Representing a function

- Verbally
- Numerically (table)
- Graphically
- Algebraically

4 different ways:

Ex: Domain of $f(x) = \sqrt{x+6}$: $x + 2 \geq 0$

$g(x) = \frac{1}{x^2 - x}$: $x \geq -2$ \hspace{1cm} Domain $\mathbb{R} - \{ 0, 1 \}$

Domain $x^2 - x = 0$ problem

$x(x-1) = 0$ \hspace{1cm} \downarrow $x = 0 \hspace{1cm} x = 1$
Panel 7

Sketch \(f(x) = x^2 - 1 \)

Panel 8

Not every graph represents a function:

Vertical line test: if no vertical line intersects a graph more than once, it's a function.
Panel 9

Piecewise defined functions:

\[
f(x) = \begin{cases}
1-x & \text{if } x \leq 1 \\
x^2 & \text{if } x > 1
\end{cases}
\]

- \(f(0) = 1 \)
- \(f(1) = 0 \)
- \(f(2) = 4 \)

Sketch this:

\[
\begin{aligned}
&1-x \\
x^2
\end{aligned}
\]

Is this right?

Panel 10

\[
f(x) = \begin{cases}
x + 2 & \text{if } x < -1 \\
x^2 + 2 & \text{if } x \geq -1
\end{cases}
\]

- \(f(-2) = 0 \)
- \(f(-1) = 1 \)

Piece together.

\[
\begin{aligned}
x + 2 \\
x^2
\end{aligned}
\]
Panel 11

A Function Catalog

- linear
- power \((x^2, x^3, x^4, x^5, x^6, 7x^7, 9x^8, \ldots)\)
- polynomials \((x^5 + 7x^2 - 9x + 103)\)
- rationals \(\frac{x-7}{x^2+9x+5}\) asymptotic
 \(\text{Roots}\)
- trig repeat \(e^r\) grows fast
- logs + exp close \(\ln(x)\) slows

Panel 12

Who's Who?

1. linear
2. power
3. polynomial
4. rational
5. trig
6. exp
7. log
8. other
2. Polynomials

1. \(x^4 - 7x^2 + 9x \)
2. \(5x^2 + 4x - 9 \)
3. \(-3x^4 + 2x - x \)
4. \(5x - 9x^2 + 7x \)