Math 1303: Practice Exam 1

This practice exam has many more questions that the real exam. The real exam will have 10 questions (some multi-part) of the type covered in this practice exam and in the homework and quizzes. If you have any questions, please email me.

1. Find the domain of the following functions:
a.
$$f(x) = \frac{x}{x^2 - 6x + 5}$$
 $x^2 - 6x + 5 = 0$ (20)
 $(x - 5)(x - 1) = 0$ (20) $x = 5 + 1$
b. $f(x) = \frac{x - 6}{\sqrt{2x - 3}}$ (2x - 3) 0
 $2x - 3$ Domain : all $x = \frac{x}{5}$
c. $f(x) = \log_2(x)$ any log (x) has an element all $x \ge 0$
d. $d. k(t) = \frac{2x^2 - 3x}{e^x}$ e^x is more two is 0 Domain is all R
e. $f(x) = \log_2(x - 1)$ $x - (x - 0) = x \ge 1$ Pomain : all $x \ge 1$

2. Suppose $f(x) = 2x^2 - 3$ and $g(x) = \frac{1}{x^2 - 1}$. Find the following quantities:

a.
$$(f^{\circ}g)(x) = f(q(x)) = f(\frac{1}{x^{2}-1}) = 2(\frac{1}{x^{2}-1}) - 3$$

b. $(g^{\circ}f)(x) = g(f(x)) = g(2x^{2}-1) = \frac{1}{(2x^{2}-1)^{2}-1}$

c.
$$(f^{\circ}f)(x) = f(f(x)) = f(2x^{2}-3) = 2(2x^{2}-3)^{2}-3$$

d.
$$\frac{f(x)}{g(x)} = \frac{2x^2-3}{\frac{1}{x^2-1}} = \frac{(2x^2-3)(x^2-1)}{(x^2-1)}$$

- 3. Suppose $f(x) = 2x^2 3$. Compute
 - $f(-2) = 2(-2)^2 3 9 3 = 5$

$$f(3t) = 2(3t)^{2} - 3 = 2 \cdot 9t^{2} - 3 = \frac{19t^{2} - 3}{10t^{2} - 3}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{12(x+h)^{2} - 3 - [2x^{2} - 3]}{h} \cdot \frac{2(x+t) + h^{2} - 3t^{2} - 3t^$$

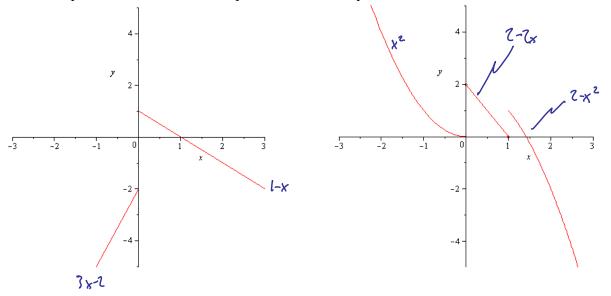
Do the same for the function f(x) = -3x + 6. f(-2), = -3(-2) + 6 + 1/2 f(3t), = -3(3t) + 6 + -9t + 6 $\frac{f(x+h) - f(x)}{h} = \frac{(-3(x+h) + 6] - (-3x+6)}{h} = -\frac{3x - 3h + x + 3x - 6}{h} = -\frac{3h}{h} = -\frac{3}{2}$

4. Let
$$h(x) = \begin{cases} 1-x & \text{if } x \ge 0\\ 3x-2 & \text{if } x < 0 \end{cases}$$
 and $g(x) = \begin{cases} x^2 & \text{if } x < 0\\ 2-2x & \text{if } 0 \le x \le 1\\ 2-x^2 & \text{if } 1 < x \end{cases}$

a. Find
$$h(-2) = -6 - 2 - 7$$

 $g(-2) = (-2)^{2} - 4$

- b. Find h(0) = [-0 =] $g(1) = 2 - 2 \cdot [= 0]$
- c. Graph the functions in two separate coordinate systems.



5. Decide whether the following functions are even, odd, or neither:

a)
$$f(x) = 2x^4 - x^2 + 1$$

$$f(x) = 2x^4 - x^2 + 1$$

$$f(-x) = \lambda(-x)^3 - (-x^4) + 2x^4 - x^2 + 1 = \frac{1}{2}(x) = 2x^4$$
b) $g(x) = \frac{x}{x^{2-1}}$

$$g(x) = \frac{x}{x^{2-1}}$$

$$g(x) = \frac{x}{x^{2$$

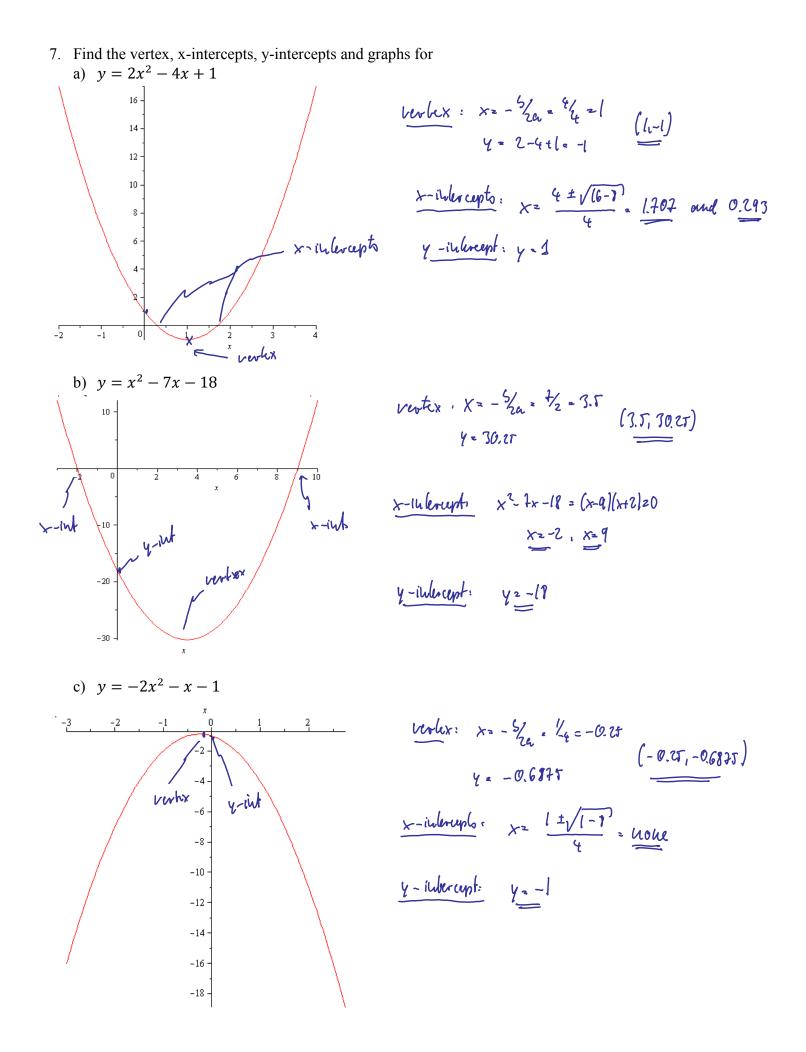
6. Find the equation of a line satisfying the given conditions
a. through (-1,2) and (2,3)

$$M = \frac{3-2}{2-6-1} = \frac{1}{3} \qquad \Rightarrow \quad y = \frac{3}{2} = \frac{1}{3} \left(x - \frac{2}{3}\right)$$

b. through (3, 4) and (-2, 4)

- c. through the point (3,1) parallel to the line 6x 3y = 6 7y 6 6x = y 2t 2x slope is 2 y - 1 = 2(x - 3)
- d. through the point (2, 1) perpendicular to the line y = 3x 1 slope in 3

- e. with x-intercept 2 and y-intercept 4
 - i.e. Awough (2,0) and (0,4) => m = $\frac{4-0}{0-2} = -2$



8. Solve the systems of equations, if possible

$$2x - y = 6 \quad |.2 = 3 \quad 4x - 2y = 12 \\ 3x + 2y = 5 \quad \frac{3x + 2y = 5}{-1x} \quad \frac{3x + 2y =$$

$$8x - 4y = 7$$

$$y = 2x - 4$$

$$9x - 4(1x - 4) = 7$$

$$8x - 1x + 16 = 7 - 3$$

$$16 = 7$$

$$helse so we solution$$

$$2x - y = 3 \quad f \cdot 2 \quad 4x - 2y = 6$$

$$-4x + 2y = 8 \qquad -4x + 2y = 8 \qquad -4x + 2y = 7$$

$$0 = 14 \quad \text{false so no solution}$$

D x+y+7 Here

9. A company makes 3 types of furniture: chairs, rockers, and chaise lounges. Each require wood, plastic, and aluminum in the quantities shown in the table below. The company stocks 8 units of wood, 10 units of plastic, and 12 units of aluminum. How many chairs, rockers, and chaise lounges should the company produce, assuming they use all of their inventory?

	Wood	Plastic	Aluminum
Chair	1 unit	1 unit	2 units
Rocker	1 unit	1 unit	1 unit
Chaise Lounge	1 unit	2 units	2 units

Hint: If x is the number of chairs, y the number of rockers, and z the number of chaise lounges, then this situation can be modeled by the system of equations:

$$\begin{array}{c} x + y + z = 8 \\ (x) + y + 2z = 10 \\ 2x + y + 2z = 12 \end{array} \xrightarrow{>} \begin{array}{c} x + y + \frac{1}{2} = 1 \\ (x) + y + \frac{1}{2} = 12 \end{array} \xrightarrow{>} \begin{array}{c} x + y + \frac{1}{2} = 1 \\ (x) + y + \frac{1}{2} = 12 \end{array} \xrightarrow{>} \begin{array}{c} x + y + \frac{1}{2} = 1 \\ (x) + y + \frac{1}{2} = 12 \end{array}$$

not exactly the night form but we can see that y=4, 6=2 and there foro x=2 Thus, Produce 2 chains, 4 voluers, and 2 chains lounges

Revenue & Publit malus no sense here, I meant remue! Sorry!

10. Suppose a profit function is given p(q) = 200q while the cost function is C(q) = 250 + 100q. Find the fixed cost and the break-even point(s).

Fixed cost is
$$C(0) = 250$$

Break - even: $R(q) = C(q)$ (=> $200q = 250 + (00q)$ => $400q - 250$ => $q = 2.5$
Break - even at production level $q = 2.5$
 $100p + q - 1200 = 0$ (song again)

11. If the supply and demand functions of a product are 120p - q - 240 = 0 and $100p_q - 1200$, respectively, find the equilibrium price.

12. Suppose a demand and supply equation are, respectively, 5p - q = 10 and $2p^2 - q = 8$. Find the equilibrium price (there may be more than one) finally a good one will no types!

$$\begin{aligned} & \int p - q \cdot (0 \quad \Rightarrow \quad \int p - (0 = q) \\ & 2p^2 - q = 8 \qquad 2p^2 - 8 = q \end{aligned} \Rightarrow \quad & 2p^2 - 8 = \int p - 10 \quad (\Rightarrow \quad 2p^2 - \int p + 2 = 0 \\ & p = \frac{\int t \sqrt{2r - 16}}{q} = \frac{\int t^2}{q} = \frac{\int t^2}{2} \quad uncl \quad 2 \quad \Rightarrow \quad \frac{p = \frac{1}{2}}{p = 2}, \quad \frac{q = -\frac{1}{2}}{q} \end{aligned}$$

13. The demand function for a product is p(q) = 200 - 2q where p is the price in dollars per unit when q units are demanded. Find the level of production that maximizes the manufacturer's revenue.

$$P(q) = 200 - 2 q$$
 demand => $R(q) = q(200 - 2q) = 200q - 2q^2$
 $P(rabola opening down => verkx is max. verlex $q = \frac{-200}{-4} = \frac{50}{2}$
 $R = 50.000 = 5000$
 $Pwedne 50 mils by max revenue $5000$$

- 14. A manufacturer sells all units produced. What is the break-even point if the product is sold at \$16 per unit, fixed cost is \$10,000, and variable cost is $y_{vc} = 8q$, where q is the number of units produced.
 - R(q) = 16 q C(q) = 8q + 10000 \Rightarrow Sieule-even, $6q = 8q + 10000 \Rightarrow q = \frac{10000}{8} = 1250$ Rudue = 1250 units to breach even
- 15. A manufacturer sells a product at \$8.35 per unit, selling all produced. The fixed cost is \$2,116 and the variable cost is \$7.20 per unit. At what level of production will the break-even point occur?

$$\Re(q)^2 = 8.35 q$$

 $\Im(q)^2 = 3.2 q + 216$
 $\Im(q)^2 = 3.2 q + 216$

16. Suppose you invest \$250 at 4% interest, compounded monthly. How much money will you have after 3 years? How much would you have if there was no compounding at all?

$$\int = P(1+r)^{n} = 250(1+\frac{0.04}{r^{2}})^{3.12} = 250(1.00333)^{16} = 291.92$$

ho compounding : 250.004.3= 30 chlast => 250+30 = 280

 17. Suppose you want to invest \$5,000 at 5% interest for 10 years. Bank A offers quarterly compounding, Bank Compounds weekly. Where would you invest your money and how much money would the difference be between bank A and B after 10 years?

Bunh	A.	5000 (1+	$\left(\frac{0.05}{4}\right)^{10.4}$	2	\$ 82(8.10
Bunh	ßr	5000 (1+	0.0T (72.0 TZ (57	4	\$ 8241.63

Difference \$23.53 (baror bank B)

18. Evaluate the following expressions:

a)
$$\log_{5}(125) = y$$

 $5^{\gamma} = 175 \Rightarrow \frac{\gamma}{2}^{2}$
b) $\log_{3}(\frac{1}{81}) = y$
 $3^{\gamma} = \frac{1}{81} = \frac{1}{3^{2}} = 3^{-3} \Rightarrow \frac{\gamma}{2}^{-3}$
c) $\log_{4}(2) = 2^{\gamma}$
 $4^{\gamma} = 2^{-3} = \frac{\gamma}{2}^{-1} \frac{1}{2}$

d)
$$\log_{\frac{1}{3}}(9) \stackrel{z}{y} \qquad \frac{1}{3} \stackrel{y}{z} \stackrel{Q}{y} \stackrel{z}{\rightarrow} \stackrel{y}{=} \stackrel{z}{\sim}$$

19. Solve for x:
a)
$$\log_2(x) = 6$$
 C=3 $2^6 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

b)
$$\log(6x-2) = 2$$

($0^{2} = 6x-2 = 3$) $loo = 6x-2 = 3$ $loo = 6x - 2 = 3$ $loo = 6x - 2$ $loo = 6x - 2 = 3$ $loo = 6x - 2$ $loo = 6x - 2$

- 20. The population of a fast-growing town in the south is modeled by the equation $P(t) = 7,000 e^{0.09 \cdot t}$ where *t* is the number of years past 1990.
 - a. What was the population of the town in 1990?

b. What will the population be in 2030?

c. When, approximately, will the population double in size?

$$P(t) = 14000 \implies 1000 e^{0.09t} = 14000 \implies e^{0.09t} = 2$$

$$\Rightarrow 0.09t = 10(2) \implies t = \frac{\ln(2)}{0.09} = \frac{1}{2}$$

Pop. will double eveny 7.7 years

21. A radioactive substance decays according to $N(t) = 10 e^{-0.14t}$ where N is the number of mg present after t hours. How much of the substance s initially present? How much is present after 5 hours? After how many hours is 0.1 mg remaining?

$$N(0)= 10 \text{ ung inihally} .$$

$$H(1)= 10 e^{-0.4 \cdot T} = 4.96 \text{ ung}$$

$$N(1)= 0.1 \implies 10 e^{-0.4 \cdot T} = 0.1 \implies e^{-0.4 \cdot T} = 0.01 \implies -0.4 \cdot t = \ln(0.01)$$

$$H(1)= 0.1 \implies 10 e^{-0.4 \cdot t} = 0.1 \implies e^{-0.4 \cdot t} = 0.01 \implies -0.4 \cdot t = \ln(0.01)$$

$$\Rightarrow t = -\frac{\ln(0.01)}{0.4 t} = 19.2$$

$$H(1)= 19.2 \text{ herms } 0.1 \text{ ung remains}$$

22. If I invest \$2,500 at 6.5% interest, compounded monthly, for how many years should I invest it to reach my goal of having \$20,000?

23. Consider the following graphs of functions. Which graph belongs to which function g(x) = x - 1b. g(x) = x - 1c. $h(x) = 3^{-x} - 1$ c. $h(x) = 3^{-x} - 1$ d. k(x) = 2 - 2x