Statistics – Sample Questions

- 1. State, in your own words, what the following terms mean
 - a) Chi-Square
 - b) p-value for Chi-Square test
 - c) expected value
 - d) rule of thumb for chi-square test
 - e) two variables are independent
- 2. Decide if the following statements are true or false.
 - a) If the p-value of a Chi-Square test comes out 0.45, there is a relation between the two variables
 - b) If an expected value in a contingency table is less than 5, and the p-value of a Chi-Square test is equal to 0.001, then the two variables are dependent
- 3. Use StatCrunch to compute a contingency table for religious preference versus political opinion, using data from the "General Social Survey (GSS)".
 - a. Is any expected value less than 5?
 - b. Compute the p-value using the Chi-Square test
 - c. What is your conclusion based on the p-value computed before
- 4. To investigate whether a relation exists between affiliation with a particular political party and the opinion on gun permits we used Excel to create the following contingency, or crosstabs, table, showing row percentages.

FAVOR OR OPPOSE GUN PERMITS * Party Affiliation Crosstabulation

% within FAVOR OR OPPOSE GUN PERMITS

		Party Affiliation				
		Democrat	Independent	Republican	Other	Total
FAVOR OR OPPOSE GUN PERMITS	FAVOR	35.7%	36.5%	26.5%	1.3%	100.0%
	OPPOSE	23.4%	39.5%	34.7%	2.4%	100.0%
Total		33.5%	37.0%	28.0%	1.5%	100.0%

- a) Based on that table, do you think there is strong evidence that the two variables associated? Use common sense (which will likely be somewhat ambiguous), not mathematics
- b) Based on your answer, what would be an approximate p-value if we conducted a Chi-Square test? Again, no math, base your answer on part (a)
- c) Why could you not use the above table to compute expected values?
- 5. Suppose a contingency table has been created from a survey questioning people about their sex (gender) and opinion on gun control. The (fictitious) table is as follows:

	For	Against
Female	60	40
Male	50	80

Is any expected value less than 5?