
Last Time

 Variables

– Different types (int, float, double, boolean, String)

– Can assign values to them, e.g. int angle = 270;

– Can perform calculations (+, -, *. /, %) with them

– Can be constants (static final …)

 Functions (or methods)

– Refer to a well-defined subtask of the overall task

– Function header (return type, name, input list)

– Function body (code that specifies how function works)

– Use comments to describe the function and its

input/output

Tasks

1. Create a robot that can drive forward

2. Create a robot that can rotate in place

3. Create a robot that can drive forward by

exactly x cm

4. Create a robot that can rotate in place by

exactly y degree

Step 1: Robot Design

Need a robot capable of performing our

tasks; as simple as possible yet as capable as

necessary

Need a machine with wheels

– needs to be able to drive forwards & backwards

– needs to be able to turn “in place”

Suggestion: 4-wheeled car-like robot

– cannot turn “in place”

Solution: Differential Drive Robot

Differential Drive Robot

Robot with 2 wheels on a common axis

Each wheel can be independently powered

either forward or backward
… might need a 3rd unpowered wheel for stability

Step 2: The Model

 real model

Differential Drive Robot and Model

Task 1

Make our robot drive forward

public static void main(String args[])

{

 // variable angle tells how much to rotate each motor in degrees

 int angle = 720;

 // now engaging both motors

 Motor.A.rotate(angle, true);

 Motor.C.rotate(angle);

}

State Variables

State variables are defined before the main

method

They describe the state of the robot, i.e.

everything that the robot has

They remain valid throughout the program

(regular variables are only valid inside the

function in which they are defined)

Usage:
 static int axlelength = 11.3;

Task 1: Drive forward
public class Driver

{

 // state variables (are frequently constant)

 static NXTRegulatedMotor leftMotor = Motor.A;

 static NXTRegulatedMotor rightMotor = Motor.C;

 static double wheelRadius = 2.8

 static double axleWidth = 14.0;

public static void main(String args[])

{

 // variable angle tells how much to rotate each motor in degrees

 int angle = 720;

 // now engaging both motors

 leftMotor.rotate(angle, true);

 rightMotor.rotate(angle);

}

}

Task 2: Rotate in Place
public class Rotator

{

 static Motor leftMotor = Motor.A;

 static Motor rightMotor = Motor.C;

 static double wheelRadius = 2.5;

 static double axleLength = 13.0;

 public static void main(String args[])

 {

 // variable angle tells how much to rotate each motor in degrees

 int angle = 720;

 // now engaging both motors in opposite directions

 leftMotor.rotate(angle, true);

 rightMotor.rotate(-angle);

 }

}

Task 3 (the math)

Create a robot that can drive forward x cm

Model

Task 3 (the math)

Create a robot that can drive forward x cm

Model

Task 3 (the math)
 If angleR is an angle in radians and radius is the radius of

a circle, then:

 distance = angleR * radius

 If angleD is an angle in degrees:

 angleD/360 = angleR/2 Pi

 Combining those equations:

 distance = angleD / 180 * Pi * radius

 Or equivalently:

 distance / radius * 180 / Pi = angleD

