
Last Time

Basics of programming

– create source code, compile, execute (repeat)

Basics of programming in Java

– case-sensitive, standard framework, statements

ending with “;”, groups enclosed in “{…}”

Basics of using Eclipse to program in Java

– projects and classes, automatic spell-check,

hint(s) to fix mistakes, running a program

How to use named components

– LCD, Sound, Motor, Button

The “LCD” Component

This component supports the functions:

– LCD.clear();

– LCD.drawChar(char c, int x, int y);

– LCD.drawInt(int i, int x, int y);

– LCD.drawString(String s, int x, int y);

– LCD.refresh();

The “Sound” Component

This component supports the functions:

– Sound.beep();

– Sound.beepSequence();

– Sound.beepSequenceUp();

– Sound.buzz();

– Sound.pause(millisecs);

– Sound.playTone(freq, duration);

The “Button” Component

This component contains the subcomponents

ESCAPE, ENTER, LEFT, RIGHT

which in turn support the functions:

– isUp();

– isDown();

– waitForPress();

– waitForPressAndRelease();

The “Motor” Component
This component contains subcomponents A, B,

and C, which in turn support the functions:

– backward();

– forward();

– flt();

– isMoving();

– getTachoCount();

– resetTachoCount();

– rotate(int angle)

– rotate(int angle, boolean returnImmediately)

– setAcceleration(int acc)

– setSpeed(int speed)

Example: Play Music (1)
public class PlayBeethoven

{

 public static void main(String args[])

 {

 // play “e” three times

 Sound.playTone(659, 200);

 Sound.pause(220);

 Sound.playTone(659, 200);

 Sound.pause(220);

 Sound.playTone(659, 200);

 Sound.pause(220);

 // play “c”

 Sound.playTone(523, 600);

 Sound.pause(600);

 }

}

Variables

You can define variables to hold data of a

specific type:
– int (an integer)

– float (a “small” decimal)

– double (a decimal)

– boolean (true or false)

– String (of characters)

(a variable is a “bucket” that can

hold some specific kind of data)

 int number = 10;

Example: Play Music (2)

public class PlayBeethoven

{

 public static void main(String args[])

 {

 int E = 659;

 int C = 523;

 Sound.playTone(E, 200);

 Sound.pause(220);

 Sound.playTone(E, 200);

 Sound.pause(220);

 Sound.playTone(E, 200);

 Sound.pause(220);

 Sound.playTone(C, 600);

 Sound.pause(600);

 }

}

Special variables: Constants

Sometimes variables don’t vary but provide a

convenient name for a value that won’t change

– define constants of a specific type immediately after the

“class” and before the “main” method

– can do calculations with constants and variables

Example:

 static final double PI = 3.1415;

 static final NAME = “Bert”;

 ...

 double r = 3.0;

 double circleArea = PI * r*r;

Example: Play Music (3)

public class PlayBeethoven

{

 static final int E = 659;

 static final int C = 523;

 static final int TIME = 200;

 public static void main(String args[])

 {

 Sound.playTone(E, TIME);

 Sound.pause(TIME);

 Sound.playTone(E, TIME);

 Sound.pause(TIME);

 Sound.playTone(E, TIME);

 Sound.pause(TIME);

 Sound.playTone(C, 600);

 Sound.pause(600);

 }

}

Variables and Computations

Java provides the following operators for

computations:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (remainder after integer division)

Results of computations can be assigned to a

variable or used as input to functions

double r = (10 % 3) (= is assignment op)

Example: Play Music (4)

public class PlayBeethoven

{

 static final int E = 659;

 static final int C = 523;

 static final int TIME = 200;

 public static void main(String args[])

 {

 Sound.playTone(E, TIME);

 Sound.pause(TIME + 50);

 Sound.playTone(E, TIME);

 Sound.pause(TIME + 50);

 Sound.playTone(E, TIME);

 Sound.pause(TIME + 50);

 Sound.playTone(C, 3*TIME);

 Sound.pause(3*(TIME + 50));

 }

}

Functions

 Frequently some lines of code can be combined

into functional units called “functions” (or

“methods”)

 Every function has a name, a return type, and an

(optional) input list, collectively called the function

header, as well as a function body. Once defined,

functions can be used multiply times

 Functions are defined before the “main” function

 Clever and flexible definitions of functions are the

hallmark of any good program!!!

Example: Play Music (5)
public class PlayBeethoven

{

 static final int E = 659;

 static final int C = 523;

 static final int TIME = 200;

 public static void play(int freq, int duration)

 {

 Sound.playTone(freq, duration);

 Sound.pause(duration + 50);

 }

 public static void main(String args[])

 {

 play(E, TIME);

 play(E, TIME);

 play(E, TIME);

 play(C, 3*TIME);

 }

}

Mandatory Comments

Every program must contain comments for

the following:

– the programmer’s name (use @author)

– the date or version when the program was

created (use @version)

– a brief description in English as to what the

program does

– Any defined function should include a

comment explaining what it does and what the

input and output of the function is

Example: Play Music (6)
/*

 * This program plays the first few notes of Beethoven’s 5th symphony

 *

 * @author Bert Wachsmuth

 * @version 1.0 (01/27/2014)

 */

public class PlayBeethoven

{

 // defining the frequencies of the notes used

 static final int E = 659;

 static final int C = 523;

 // defining the base length of a note

 static final int TIME = 200;

 // function to play a note at a given frequency and duration

 public static void play(int freq, int duration)

 {

 ... Rest as before ...

}

Robot Task 1

 Create a program to play a “song”, where “song” is

defined as a collection of at least 4 notes

 Your program must include variables or constants or

both as well as functions

 Your program must include comments for your name,

the version or date, and a brief program description

 EXTRA: Your program can show the name and

composer of the song on the LCD panel while playing

the song

 You need to submit the printed program as well as

demonstrate it (i.e. play the song)

