
Last Time

Basics of programming

– create source code, compile, execute (repeat)

Basics of programming in Java

– case-sensitive, standard framework, statements

ending with “;”, groups enclosed in “{…}”

Basics of using Eclipse to program in Java

– projects and classes, automatic spell-check,

hint(s) to fix mistakes, running a program

How to use named components

– LCD, Sound, Motor, Button

The “LCD” Component

This component supports the functions:

– LCD.clear();

– LCD.drawChar(char c, int x, int y);

– LCD.drawInt(int i, int x, int y);

– LCD.drawString(String s, int x, int y);

– LCD.refresh();

The “Sound” Component

This component supports the functions:

– Sound.beep();

– Sound.beepSequence();

– Sound.beepSequenceUp();

– Sound.buzz();

– Sound.pause(millisecs);

– Sound.playTone(freq, duration);

The “Button” Component

This component contains the subcomponents

ESCAPE, ENTER, LEFT, RIGHT

which in turn support the functions:

– isUp();

– isDown();

– waitForPress();

– waitForPressAndRelease();

The “Motor” Component
This component contains subcomponents A, B,

and C, which in turn support the functions:

– backward();

– forward();

– flt();

– isMoving();

– getTachoCount();

– resetTachoCount();

– rotate(int angle)

– rotate(int angle, boolean returnImmediately)

– setAcceleration(int acc)

– setSpeed(int speed)

Example: Play Music (1)
public class PlayBeethoven

{

 public static void main(String args[])

 {

 // play “e” three times

 Sound.playTone(659, 200);

 Sound.pause(220);

 Sound.playTone(659, 200);

 Sound.pause(220);

 Sound.playTone(659, 200);

 Sound.pause(220);

 // play “c”

 Sound.playTone(523, 600);

 Sound.pause(600);

 }

}

Variables

You can define variables to hold data of a

specific type:
– int (an integer)

– float (a “small” decimal)

– double (a decimal)

– boolean (true or false)

– String (of characters)

(a variable is a “bucket” that can

hold some specific kind of data)

 int number = 10;

Example: Play Music (2)

public class PlayBeethoven

{

 public static void main(String args[])

 {

 int E = 659;

 int C = 523;

 Sound.playTone(E, 200);

 Sound.pause(220);

 Sound.playTone(E, 200);

 Sound.pause(220);

 Sound.playTone(E, 200);

 Sound.pause(220);

 Sound.playTone(C, 600);

 Sound.pause(600);

 }

}

Special variables: Constants

Sometimes variables don’t vary but provide a

convenient name for a value that won’t change

– define constants of a specific type immediately after the

“class” and before the “main” method

– can do calculations with constants and variables

Example:

 static final double PI = 3.1415;

 static final NAME = “Bert”;

 ...

 double r = 3.0;

 double circleArea = PI * r*r;

Example: Play Music (3)

public class PlayBeethoven

{

 static final int E = 659;

 static final int C = 523;

 static final int TIME = 200;

 public static void main(String args[])

 {

 Sound.playTone(E, TIME);

 Sound.pause(TIME);

 Sound.playTone(E, TIME);

 Sound.pause(TIME);

 Sound.playTone(E, TIME);

 Sound.pause(TIME);

 Sound.playTone(C, 600);

 Sound.pause(600);

 }

}

Variables and Computations

Java provides the following operators for

computations:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

% (remainder after integer division)

Results of computations can be assigned to a

variable or used as input to functions

double r = (10 % 3) (= is assignment op)

Example: Play Music (4)

public class PlayBeethoven

{

 static final int E = 659;

 static final int C = 523;

 static final int TIME = 200;

 public static void main(String args[])

 {

 Sound.playTone(E, TIME);

 Sound.pause(TIME + 50);

 Sound.playTone(E, TIME);

 Sound.pause(TIME + 50);

 Sound.playTone(E, TIME);

 Sound.pause(TIME + 50);

 Sound.playTone(C, 3*TIME);

 Sound.pause(3*(TIME + 50));

 }

}

Functions

 Frequently some lines of code can be combined

into functional units called “functions” (or

“methods”)

 Every function has a name, a return type, and an

(optional) input list, collectively called the function

header, as well as a function body. Once defined,

functions can be used multiply times

 Functions are defined before the “main” function

 Clever and flexible definitions of functions are the

hallmark of any good program!!!

Example: Play Music (5)
public class PlayBeethoven

{

 static final int E = 659;

 static final int C = 523;

 static final int TIME = 200;

 public static void play(int freq, int duration)

 {

 Sound.playTone(freq, duration);

 Sound.pause(duration + 50);

 }

 public static void main(String args[])

 {

 play(E, TIME);

 play(E, TIME);

 play(E, TIME);

 play(C, 3*TIME);

 }

}

Mandatory Comments

Every program must contain comments for

the following:

– the programmer’s name (use @author)

– the date or version when the program was

created (use @version)

– a brief description in English as to what the

program does

– Any defined function should include a

comment explaining what it does and what the

input and output of the function is

Example: Play Music (6)
/*

 * This program plays the first few notes of Beethoven’s 5th symphony

 *

 * @author Bert Wachsmuth

 * @version 1.0 (01/27/2014)

 */

public class PlayBeethoven

{

 // defining the frequencies of the notes used

 static final int E = 659;

 static final int C = 523;

 // defining the base length of a note

 static final int TIME = 200;

 // function to play a note at a given frequency and duration

 public static void play(int freq, int duration)

 {

 ... Rest as before ...

}

Robot Task 1

 Create a program to play a “song”, where “song” is

defined as a collection of at least 4 notes

 Your program must include variables or constants or

both as well as functions

 Your program must include comments for your name,

the version or date, and a brief program description

 EXTRA: Your program can show the name and

composer of the song on the LCD panel while playing

the song

 You need to submit the printed program as well as

demonstrate it (i.e. play the song)

