
Introduction to

Robots and the Mind
- Programming Basics -

Bert Wachsmuth & Michael Vigorito

Seton Hall University

Programming Groups
Albrecht Brittney & Lino Jennifer
Bie Jennifer & Guida David

&
De Clerico Mario & Tigol Angelo
Lambraia Jonathan & Torres Chelsea

&
Mahan Kelsey & Gleason Paige
McCaskill Lauren & Perry Thomas
Naslonski Paulina & Wager Tara

&

Oliver Keenan &

Adams-

Martinez Shomari

&
Ralston Kristen & Loughrey Dana

&

Schindler Kimberly &
Brutus-
Foulkes Rezina

Singh Diljeet & Rubenstein Kimberly
Tietchen Shannon & Nivar Aileen

&

&

Programming

“Creating a sequence of instructions to

enable the computer/robot to do something”
http://wordnetweb.princeton.edu/perl/webwn?s=computer programming

1. Create the program , i.e. the sequence of instructions.

Most spoken languages are full of ambiguities, so we use a special

language instead, such as Java (or C++, Perl, Scheme, Python, or …)

2. Translate the program into instructions that the computer

processor can understand

3. Execute the instructions and test the program

Creating a Program

Need to learn the grammar and vocabulary

of our special language of choice (Java)

Need a special editor, preferably with a

build-in spell-checker for our language

Need a mechanism to translate and execute

our program

Basic Grammar of Java

 A (Java) program is a sequence of statements, one

per line

 Java is case-sensitive, i.e. the word “LCD” and

“Lcd” are considered different.

 A valid Java statement must end with a semi-colon

; unless it starts a group.

 Java uses three sets of parenthesis/brackets:

– curly brackets “{ … }” to group statements together

– regular parenthesis “(…)” to denote inputs to functions

and for math expressions

– square brackets “[…]” to denote what’s called arrays

Basic Grammar of Java

Every (almost) Java program has a unique program name and

includes as a minimum the following lines, known as the

standard framework:

public class ProgramName

{

 // One-line comment describing the program in English

 public static void main(String[] args)

 {

 /*

 describes any necessary details using

 multi-line comments

 */

 }

}

Java Programs: easy to read …
public class MysteryProgram

{

 public static void main(String args[])

 {

 LCD.drawString(“Welcome”, 0, 0);

 Motor.B.rotate(720);

 UltrasonicSensor sensor =

 new UltrasonicSensor(SensorPort.S3);

 if (sensor.getDistance() < 10)

 {

 Sound.playTone(440, 5);

 }

 }

}

Java Programs: difficult to create..

Create a program that:

(a) Plays an “intro” tune

(b) Rotates a motor

(c) Shows a string on the screen

(d) Plays an “exit” tune

Creating a “correct” Program

 Create source code according to the Java grammar

 Compile the code into machine language

 Execute and test the program

Repeat until your program correctly solves the task.

Sometimes it helps to first solve simpler tasks …

Creating a “correct” Program

Create a program that (a) plays “intro” tune

… first …

Create a program that plays a single note

Gathering the Ingredients

1. Create a new project

2. Create a new class containing our

“standard framework”

3. Learn how to play notes and add the

corresponding code to the framework

4. Execute the program and test it

5. Expand the program to solve original task

6. Test and refine if possible

Create a new Project

 Click on “File | New Project”

 Expand “LeJOS”,

highlight “LeJOS

NXT Project”

and click “Next”

 Enter a name for your

project (no spaces or

special characters), then hit “Finish”

Create Class with “Standard Framework”

 Highlight the new project

in the “Project Explorer”

 Click on “File | New” and

pick “Class”

 Enter a name for your

class, such as

“MakeSound”

(remember, no spaces!)

 Check to create the method

“public static void main”

 Note that for now you can

think of “class” as a

“program”

A Complete Robot Program

public class MakeSound {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 }

}

A Complete Robot Program

public class MakeSound

{

 public static void main(String[] args)

 {

 // TODO Auto-generated method stub

 }

}

Executing the Program

Plug-in the NXT brick and turn it on

Click the green “run” button in the tool bar

Select “LeJOS NXT

Program” and click “OK”

The program will now be linked,

downloaded to the brick, and executes (runs) – of course it

currently does nothing but you should not see any error.

Fixed NXT Components

The NXT brick includes many named

components such as LCD, Sound, Motor, etc.

Some have fixed properties; programming

those is easy: use them by name and call on

their built-in functions using the syntax

Component.function(optional input)

Note: in proper Java lingo such functions are

called static methods

The “Sound” Component

The Sound component supports the

following static methods to generate music:

– Sound.beep()

– Sound.beepSequence()

– Sound.beepSequenceUp()

– Sound.buzz();

– Sound.pause(millisecs)

– Sound.playTone(freq, duration)

