

Introduction to **Robots and the Mind** - part 1 -

Bert Wachsmuth & Michael Vigorito Seton Hall University

Robots &

(Bert Wachsmuth) (Math & CS)

- Algorithms and Program design
- Programming in Java
- Building Robots
- Sensor feedback
- Behavior-based robots
- Robots that learn

the Mind

(Michael Vigorito) (Psychology)

- Science and Catholic thought
- Neuroscience
- Evolution & natural selection
- Sensation and perception
- Adaptive behavior and learning

What is a Robot (1/2)

 "An intelligent robot is a machine able to extract information from its environment and use knowledge about its world to move safely in a meaningful and purposeful manner"

 "A robot is a machine that gathers information about its environment (senses) and uses that information (thinks) to follow instructions to do work (acts)."

What is a Robot (2/2)

 A robot is a system which exists in the physical world and autonomously senses its environment and acts in it.

 The word "robot" was used in a play called "Rossum's Universal Robots" in 1921 by Czech playright Karel Capek. It stood for *forced*

stood for *forc* labor or serf.

Robots in the Physical World

Components of a Robot

A robot ... exists ... senses ... and acts

It has:

- Sensors
- Effectors/Actuators
- On-board computer
- (Locomotion System)

Robot with different Locomotion System

What is Robotics

- Robotics is the science and technology of robots, their design, manufacture, and application.
- Robotics is at the intersection of multiple disciplines

http://www.edinformatics.com/math_science/robotics/robotics1.htm

Robotics Concepts

Robotics revolves around two basic ideas:

 Model: an abstract representation of the world and the robot in it, often in mathematical terms

 Algorithm: a sequence of well-defined steps to solve a particular problem or accomplish a particular goal

Model/Algorithm Example

Problem: find intersection of two lines

Model:

– each line is represented by:

- linear equations $y = m_1 x + b_1$ and $y = m_2 x + b_2$

Algorithm:

- Solve $m_1 x + b_1 = m_2 x + b_2$
 - Collect numbers on one side
 - Collect *x*'s on other side
 - Factor and divide

Maze Model/Algorithm

- Touch left wall and extend right arm forward
 - if front clear and wall on the left, go forward
 - if left wall is missing, turn left 90⁰
 - if front is blocked, turn right 90°
- Repeat until you reach finish

Maze Algorithm

http://www.youtube.com/watch?v=MX1VLwS01wo

First century A.D. and earlier Descriptions of more than 100 machines and automata, including a fire engine, a wind organ, a coin-operated machine, and a steam-powered engine, in Pneumatica and Automata by Heron of Alexandria

1206

Al-Jazari created early humanoid automata, including a programmable "automaton band"

1495

Leonardo da Vinci created designs for a humanoid robot, including a mechanical knight (wave, sit, pretend-walk, pretend-speak)

1738

Jacques de Vaucanson: Mechanical duck that was able to eat, flap its wings, and excrete.

Designed automatic loom (see J.M. Jacquard)

1898

Nikola Tesla demonstrates first radio-controlled boat

1921 1930s

History of Robots

First fictional automatons called "robots" appear in the play R.U.R. Rossum's Universal Robots by *Čapek*

Humanoid robot "Electro" and "Sparko" the dog created by Westinghouse exhibited at the 1939 and 1940 World's Fairs

1948

1956

William Grey Walter: "turtles" (Elsie and Elmer) exhibiting biological behaviors

First commercial robot Unimate from the

Unimation company founded by *George Devol* and *Joseph Engelberger*, worked at GM plant in NJ

- 1970's and beyond (more and more capable):
 - palletizing robot
 - programmable universal manipulation arm
 - swimming and flying robots
 - robotic cars
 - robots in space and on other planets
 - household robots
 - rescue robots
 - medical and surgical robots
 - robots for war and destruction

Real Robots

Fake Robots (all but one)

Fake Robots (all but one)

Honda's Asimo

Logo Mindstorm NXT

- NXT Intelligent Brick
 - 32bit ARM7 microcontroller
 - 256 KB Flash , 64 KB RAM
 - 4 input ports (for sensors)
 - 3 output ports (for motor)
 - LCD display with 100 x 64 pixels
 - Speaker for 8bit resolution mono sound
- ♦ 3 servo motors & integrated rotation sensors
- Sensors: touch, light, sound, ultrasound
- Contains about 500 parts

NXT "smart" components

NXT Rubik's Cube Solver

http://www.youtube.com/watch?v=w3f-WyDqOUw

Segway Robot

• A Segway is a transporter that balances on two wheels • Construct a NXT robot that simulates a Segway transporter - Uses a PID (proportional-integralderivative) controller, which is a generic control loop feedback mechanism

Robot Programming

 Robots have on-board computer to monitor the sensors and regulate the actuators

NXT can be programmed in:
NXT-G

- Assembly Language

– C or C#

-Java

- MS Robotics Studio

A "Program"

- Sequence of instructions to tell robot what to do:
 - Written by humans in a *programming language*
 - Translated by a *compiler* to machine language
 - Uploaded to robot's processor
 - *Executed* by robot step by step

Programming Necessities

- Editor to write the program
- Compiler to translate the program
- Uploader to transfer the program
- **Robot** to execute the program

