Drawing with OpenGL
See http://glprogramming.com/red/index.html for details. Parts of this intro were distilled from that tutorial
OpenGL is a software interface to graphics hardware. This interface consists of about 150 distinct commands that you use to specify the objects and operations needed to produce interactive three-dimensional applications. Import:

#include <GL/gl.h>

The OpenGL Utility Library (GLU) provides many advanced modeling features, such as special curves and surfaces. GLU is a standard part of every OpenGL implementation. GLU routines use the prefix glu. Import:

#include <GL/gl.h>

#include <GL/glu.h>

The OpenGL Utility Toolkit (GLUT) is a window system-independent toolkit, written by Mark Kilgard, to hide the complexities of differing window system APIs. GLUT routines use the prefix glut. Import:
#include <GL/glut.h>

Note that glut.h includes gl.h, glu.h (and glx.h) automatically.
Compiling against the OpenGL Libraries

To compile (and link) a program including gl.h, glu.h, or glut.h, use the following link flags:

g++ myprog.c -lglut -lGLU -lGL
Window Initialization

Five routines perform tasks necessary to initialize a window.

· glutInit(int *argc, char **argv) initializes GLUT and processes any command line arguments (for X, this would be options like -display and -geometry). glutInit() should be called before any other GLUT routine.

· glutInitDisplayMode(unsigned int mode) specifies whether to use an RGBA or color-index color model. You can also specify whether you want a single- or double-buffered window. Finally, you can use this routine to indicate that you want the window to have an associated depth, stencil, and/or accumulation buffer. For example, if you want a window with double buffering, the RGBA color model, and a depth buffer, you might call glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) to setup double-buffered drawing, or use GLUT_SINGLE instead of GLUT_DOUBLE for single-buffer drawing.
· glutInitWindowPosition(int x, int y) specifies the screen location for the upper-left corner of your window.

· glutInitWindowSize(int width, int size) specifies the size, in pixels, of your window.

· int glutCreateWindow(char *title) creates a window with an OpenGL context and the specified title string
The Display Callback

glutDisplayFunc(void (*func)(void)) is the first and most important event callback function. Whenever GLUT determines the contents of the window need to be redisplayed, the callback function registered by glutDisplayFunc() is executed. Therefore, you should put all the routines you need to redraw the scene in the display callback function. Other callback functions include:

· glutReshapeFunc(void (*func)(int w, int h)) indicates what action should be taken when the window is resized.

· glutKeyboardFunc(void (*func)(unsigned char key, int x, int y)) and glutMouseFunc(void (*func)(int button, int state, int x, int y)) allow you to link a keyboard key or a mouse button with a routine that's invoked when the key or mouse button is pressed or released.

· glutMotionFunc(void (*func)(int x, int y)) registers a routine to call back when the mouse is moved while a mouse button is also pressed.

Running the Program

The very last thing you must do is call glutMainLoop(void). All windows that have been created are now shown, and rendering to those windows is now effective. Event processing begins, and the registered display callback is triggered. Once this loop is entered, it is never exited until the program is terminated by the user.

Basic Example Program
Here is a basic program that displays a (black) window with a title:
#include <GL/glut.h>
// Setup routines that need to execute only once
void setup()
{
}
// Drawing routines that need to execute every time the window needs redrawing
void display()
{
}
// Standard main function
int main(int argc, char *argv[])
{
 // initializing a window
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowPosition(100, 100);
 glutInitWindowSize(600, 600);
 glutCreateWindow("Basic OpenGL Program");
 // GL one-time setup
 setup();
 // Registering 'display' as main callback function
 glutDisplayFunc(display);
 // Entering the main display loop
 glutMainLoop();
 return 0;
}
If this program is saved as "basicGL.c", you can compile it with g++ basicGL.c -lglut -lGLU –lGL

Simple 2D Program

To turn our basic program into a simple 2D sample program, we'll implement setup and display as follows:

void setup()

{

// Set clearing background color (R,G,B,alpha values) to white

glClearColor (1.0, 1.0, 1.0, 0.0);

// Setup a 2D coordinate system (xMin, xMax) by (yMin, yMax), here [-2,2] x [-2,2]

gluOrtho2D(-2.0, 2.0, -2.0, 2.0);

}

This will actually not do anything yet except for setting up basic drawing parameters, because the real drawing happens in the "graphics" callback function. We could define that as follows:

void display()
{

// Clearing the screen in the previously defined clear background color (white)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 // Setting the drawing color as (R,G,B) value to black (0,0,0)
glColor3f(0.0, 0.0, 0.0);

// Drawing a simple line with the given vertices, resulting in a "\"

glBegin(GL_LINE);

glVertex2f(-2.0, 2.0);

glVertex2f(2.0, -2.0);

glEnd();

// Now processing all OpenGL routines

glFlush();

// If you defined double-buffered drawing, you would use glutSwapBuffers() instead

// of glFlush(), or you could use glFinish() to force drawing. Double-buffered

// drawing would be especially applicable for animation or gaming programings.
}
Other simple 2D drawing routines can be specified as follows:
void glBegin(GLenum mode);
Marks the beginning of a vertex-data list that describes a geometric primitive. The type of primitive is indicated by mode, which can be any of the following:

· GL_POINTS - individual points

· GL_LINES - pairs of vertices interpreted as individual line segments

· GL_LINE_STRIP - series of connected line segments

· GL_LINE_LOOP - same as above, with a segment added between last and first vertices

· GL_TRIANGLES - triples of vertices interpreted as triangles

· GL_TRIANGLE_STRIP - linked strip of triangles

· GL_TRIANGLE_FAN - linked fan of triangles

· GL_QUADS - quadruples of vertices interpreted as four-sided polygons

· GL_QUAD_STRIP - linked strip of quadrilaterals

· GL_POLYGON - boundary of a simple, convex polygon

void glEnd(void);

Simple 3D Program

The above simple example shows how to do 2D drawings (we'll give a more elaborate example below). But OpenGL is inherently a 3D drawing package, and it includes texture, lighting, transformations such as translation and rotation, etc. routines. The scope of 3D drawing is beyond this little introduction, but to create a simple 3D drawing program is simple. We'll keep the previous framework, but modify the 'setup' function to define a proper 3D coordinate system, and in 'display' we'll define a few 3D graphics primitives instead of 2D ones.

void setup()
{
 // Set clearing background color (R,G,B,alpha values) to white
 glClearColor (1.0, 1.0, 1.0, 0.0);
 // Setup a 3D coordinate system [xMin,xMax] x [yMin,yMax] x [zMin,zMax]
 glOrtho(-2.0,2.0, -2.0,2.0, -2.0,2.0);
 // Setting up the camera at point (1,1,1) looking towards (0,0,0) and defining
 // vector (0,0,1) as 'up'
 gluLookAt (1.0,1.0,1.0, 0.0,0.0,0.0, 0.0,0.0,1.0);
}
// Drawing routines that need to execute every time the window needs redrawing
void display()
{
 // Clearing the screen in the previously defined clear background color (white)
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 // Setting the drawing color as (R,G,B) value to blue (0,0,1)
 glColor3f(0.0, 0.0, 1.0);
 // Drawing a simple cube with egde 1.0 centered at the origin
 glutWireCube(1.0);
 // Process all GL routines now
 glFlush();
}
GLUT includes several routines for drawing three-dimensional objects, including
· cube(GLdouble size)
· dodecahedron(void)
· sphere(GLdouble radius, Glint slices, Glint stacks)
· torus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings)
· Teapot(GLdouble size)
and others. You can draw these objects as wireframes or as solid shaded objects with surface normals defined. For example, the routines for a cube and a sphere are as follows:

· void glutWireCube(GLdouble size);

· void glutSolidCube(GLdouble size);

· void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

· void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);
Of course you can also draw three dimensional lines and other more flexible objects, similar to their 2D counterparts.

Drawing a Function Graph

As a useful program, let's create a program to draw a function inside a coordinate window, specified on the command line. In other words, the command:
graph -6.14 6.14 -1 1 100

should draw a function with x in [-6.14, 6.14], y in [-1.0, 1.0], using 100 line segments (more line segments will result in smoother graphs but take longer to compute. The function to be drawn is compiled in.

The idea is simple:

· Define the function as 'double f(double x)'

· Process command line parameters and setup a window of appropriate size. We will use the function atoi and atof to convert/parts strings to integers or decimals, respectively. These functions are available in stdlib.h.
· Compute N points (x, f(x)), where x is between xMin and xMax, and add them as vertices to a GL_LINE_STRIP drawing primitive
Here is the code – the main portion of the program is the loop in the 'display' function:
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <GL/glut.h>

// Defining global variables for the window size and the number of segments

double xMin, xMax, yMin, yMax;

int N;

// The function to graph (must be recompiled to graph another function)

double f(double x)

{

return sin(2.0*x) + 2*cos(3.0*x);

}

// Setup routines that need to execute only once

void setup()

{

// Set clearing background color (R,G,B,alpha values) to white

glClearColor (1.0, 1.0, 1.0, 0.0);

// Setup a 2D coordinate system (xMin, xMax) by (yMin, yMax)

gluOrtho2D(xMin, xMax, yMin, yMax);

}

// Drawing routines that need to execute every time the window needs redrawing

void display()

{

int i;

double x, y;

// Clearing the screen in the previously defined clear background color (white)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Drawing the axes in black

glColor3f(0.0, 0.0, 0.0);

glBegin(GL_LINE);

glVertex2f(xMin, 0);

glVertex2f(xMax, 0);

glVertex2f(0, yMin);

glVertex2f(0, yMax);

glEnd();

// Drawing the graph in blue

glColor3f(0.0, 0.0, 1.0);

glBegin(GL_LINE_STRIP);

for (i = 0; i <= N; i++)

{

x = xMin + (xMax-xMin)*i/N;

y = f(x);

glVertex2f(x,y);

}

glEnd();

// Process all drawing routines now!

glFlush();

}

// Standard main function

int main(int argc, char *argv[])

{

if (argc < 5)

{

printf("\nGraphing a function in the specified window\n");

printf("\nUsage:\n");

printf("\tgraph xmin xmax ymin ymax N\n");

printf("\nwhere xmin < xmax and ymin < ymax\n\n");

exit(-1);

}

// Parsing the input values into numbers

xMin = atof(argv[1]);

xMax = atof(argv[2]);

yMin = atof(argv[3]);

yMax = atof(argv[4]);

N = atoi(argv[5]);

// initializing a window

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowPosition(100, 100);

glutInitWindowSize(600, 600);

glutCreateWindow("Basic Graphing Program");

// GL one-time setup

setup();

// Registering 'display' as main callback function

glutDisplayFunc(display);

// Entering the main display loop

glutMainLoop();

return 0;

}
This function has some performance issues because the values of the graph must be recomputed every time the window needs to be re-displayed. For example, try to increase or decrease the size of the window while the program is running. A better approach would be to first compute all (x,y) values that define our function and then use that list of values to generate the graph, without recomputing. More on that next time …
