Introduction to C Programming

1. Create source code in a text editor

2. Save file with a “*.c” extension

3. Compile file by typing “g++ filename.c” (or use various switches)
4. Run program by typing ./a.out

· C is case-sensitive

· Curly brackets are used to group things

· Every line should end with a semicolon (except grouping statements)

· Compiler variations and flags:

· gcc -pedantic -c filename.c – compiles only, using strict ANSI standard C

· gcc - pedantic filename.c -o outfile – comples using strict ANSI C and produces outfile as output

Basic Data types

· float or double: decimal numbers

· int, long, or short: integers (also unsigned int etc.)

· char: single characters

Declaration, Assignments and Comparisons

· variables should be declared at the beginning of your 'function'

· to assign values to variables, use the “=” operator (looks like equal, but means assign)

· to compare values, use <, <=, >, >=, ==, !=, as well as && (and), || (or), and ! (not)

Input/Output

C does not produce input or output by itself but you can #include <stdio.h> to get access to that capability. If you do that you can use 'printf' to produce output, or 'scanf' to read values from the keyboard.

For output:

printf(“test %placeholder1 [%placeholderN]”, var1 [, var2, ..., varN]) will substitute the values of the variables in the placeholder and print out the results. Lots of subtle details (see below)
For input

scanf(“%placeholder”, [&]variable) will read a value from the keyboard and place it into the variable. You should use the ampersand for basic variables but not for strings. LOTS of subtle problems

Notes:

· %f is placeholder for a decimal variables, %e for scientific format, or %g for shorter of the two

· %d is placeholder for integer variables (%x in hex decimal format)

· %c is placeholder for a character variable

· %s is placeholder for a String (complicated)

Conditional Execution

	
if (test)

{ }
	if (test)

{ }

else

{ }
	if (test)

{ }

else if

{ }

...

else

{ }

Loops

	for (init; test; modifier)
{ }
	init;
while (test)
{}

Advanced Data Structures

Arrays and Records: Arrays are many variables of the same type combined into one and accessed by an integer index. Records are variables of different types, combined into one and accessed by name.

int x[10];

is an array of 10 integers, indexed from 0 to 9

struct user

{

 char name[50];

 int age;

};

is a structure with two parts, a character array and an integer.

Advanced Organizational Principles

Large programs are organized into several files, often including header (with *.h extension) and program (with *.c extension). Within one file code is organized into functions that can be re-used to produce different output based on different input.

Simple Example

int main(void)

{

 return 0;

}

More elaborate Example:

File “const.h”

#define PI 3.1415

File “simple.c”:

#include <stdio.h>

#include "const.h"

struct userinfo

{

 char name[50];

 int age;

};

int main(void)

{

 float radius, area;

 struct userinfo user;

 int choice = '0';

 printf("Enter your name: ");

 scanf("%s", user.name);

 printf("Enter your age: ");

 scanf("%d", &user.age);

 while (choice >= 0)

 {

 printf("%s, %d years old, enter value for radius: ", user.name, user.age);

 scanf("%f", &radius);

 area = PI * radius*radius;

 printf("Area of circle of radius %f is %f.\n", radius, area);

 printf("\n\nHit '1' to continue or '-1' to quit: ");

 scanf("%d", &choice);

 }

 return 0;

}

Details on printf
From http://faq.cprogramming.com/cgi-bin/smartfaq.cgi?answer=1048379655&id=1043284385

The first argument to printf is a format string which determines the number and type of values. The types of values are determined by single letter, the types are:

 d /* int, signed base 10 */

 i /* int, signed base 10 */

 o /* int, unsigned base 8, no leading 0 */

 x /* int, unsigned base 16, abcdef with no leading 0x */

 X /* int, unsigned base 16, ABCDEF with no leading 0X */

 u /* int, unsigned base 10 */

 s /* char *, nul terminated sequence of characters */

 c /* int, single character */

 f /* double, notation [-]mm.dd */

 e /* double, notation [-]m.dde[+/-]xx */

 E /* double, notation [-]m.ddE[+/-]xx */

 g /* double, %e if exponent is less than -4 or >= the precision, %f otherwise */

 G /* double, %E if exponent is less than -4 or >= the precision, %f otherwise */

 p /* void *, implementation dependent representation */

 n /* int *, the number of characters written so far. Assigned to the argument */

 % /* print a % character */

A format flag begins with the % character, then one of the following prior to the conversion character:

 1: Flags that modify the specification:

 -, left adjustment

 +, the number will be printed with a sign space, space prefix if no sign is present

 0, pads numbers with leading zeros

 #, alternate output form.

 %o, prefix with 0

 %x, prefix with 0x

 %X, prefix with 0X

 %e, E, f, g, G, always show a radix point

 %g, %G, show trailing zeros

 2: A number specifying the minimum field width.

 3: A period, separating field width from precision

 4: A number specifying the precision length

 5: A length modifier, h, l, or L. h specifies a short or unsigned short value,

 l specifies a long or unsigned long, and L specifies long double.

The width or precision can be replaced with *, where the value is computed from the next integer argument.
#include <stdio.h>

int main (void)

{

 printf ("%5d\n", 123); /* Prints " 123" */

 printf ("%*d\n", 5, 123); /* Prints " 123" */

 printf ("%+05d\n", 123); /* Prints "+0123" */

 printf ("%x\n", 123U); /* Prints "7b" */

 printf ("%#x\n", 123U); /* Prints "0x7b" */

 printf ("%-10.2f\n", 12.3); /* Prints "12.30" */

 printf ("%10.2f\n", 12.3); /* Prints " 12.30" */

 printf ("%s\n", "Testing"); /* Prints "Testing" */

 printf ("%c\n", 'A'); /* Prints "A" */

 return 0;

}
Pointers and Modularity in C and C++
Goal: Create a function that swaps two values.

Try 1: Using basic data integer types – this will not work!
void swap(int i, int j)

{

 int tmp;

 tmp = i;

 i = j;

 j = tmp;

}

int main()

{

 int x = 10, y = 20;

 swap(x, y);

 printf("x = %d, y = %d\n", x, y);

}

Try 2: Using pointers (where &var refers to the address of variable var, and *var refers to the value that the pointer variable var points to) – this should work.

void swap(int *i, int *j)

{

 int tmp;

 tmp = *i;

 *i = *j;

 *j = tmp;

}

int main()

{

 int x = 10, y = 20;

 swap(&x, &y);

 printf("x = %d, y = %d\n", x, y);

}

Try 3: The same program as a C++ program uses a somewhat simpler notation (works also), where the ampersand indicates "variable passing by parameter" instead of "passing by value"
void swap(int &i, int &j)

{

 int tmp;

 tmp = i;

 i = j;

 j = tmp;

}

int main()

{

 int x = 10, y = 20;

 swap(x, y);

 printf("x = %d, y = %d\n", x, y);

}

Try 4: Using “modularity”

File 1: swap.h

void swapi(int *, int *);

void swapf(float *, float *);

File 2: swap.c

void swapi(int *i, int *j)

{

 int tmp;

 tmp = *i;

 *i = *j;

 *j = tmp;

}

void swapf(float *i, float *j)

{

 float tmp;

 tmp = *i;

 *i = *j;

 *j = tmp;

}

File 3: prg.c

#include "swap.h"

int main(void)

{

 int i = 10, j = 20;

 swapi(&i, &j);

 float x = 10, y = 20;

 swapf(&x, &y);

}

To compile:

gcc swap.c prg.c -o prog

Has the advantage that the “swap” family of functions could now used without change by other programs as well.

Try 5: Using “modularity” via overloading and classes (a C++ concept)

File 1: swapper.h

class Swapper

{

 public:

 void swap(int &, int &);

 void swap(float &, float &);

};

File 2: swapper.cpp

#include "swapper.h"

void Swapper::swap(int &i, int &j)

{

 int tmp;

 tmp = i;

 i = j;

 j = tmp;

}

void Swapper::swap(float &i, float &j)

{

 float tmp;

 tmp = i;

 i = j;

 j = tmp;

}

File 3: swap_prg.cpp
#include <stdio.h>

#include "swapper.h"

int main(void)

{

 Swapper swapper;

 int i = 10, j = 20;

 float x = -10.0, y = -20.0;

 printf("i = %d, j = %d\n", i, j);

 swapper.swap(i, j);

 printf("i = %d, j = %d\n", i, j);

 printf("x = %f, y = %f\n", x, y);

 swapper.swap(x, y);

 printf("x = %f, y = %f\n", x, y);

}

To compile:

gcc swapper.cpp swap_prg.cpp -o swap
More about Pointers
We already saw the use of pointer variables to create functions that can pass variables by parameter into function, so that any changes the function does can be reflected outside the function. Another common use of pointers if to create memory dynamically, i.e. at runtime, not at compile-time. C offers, among other things, three utility functions for that, all part of stdlib.h:

sizeof
returns the size of the input type in bytes

malloc
allocates the amount of memory requested and returns an (un-typed) pointer to that memory location or null if memory could not be allocated.

free
to free up any memory previously allocated by malloc or its relatives
Example:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // Defining pointer variables to an integer and a float. Requires 2 bytes of memory

 // for each pointer variables, because all pointer variables require the same amount

 // of memory regardless of the type they are pointing to.

 int *i;

 float *x;

 // Now setting up the memory for each data type, which will be allocated at runtime,

 // not at compile-time. Note the type-casting of the pointer to the appropriate type.

 i = (int *) malloc(sizeof(int));

 x = (float *) malloc(sizeof(float));

 // Now checking if memory could be allocated successfully

 if ((i == 0) || (x == 0))

 {

 printf("Sorry, out of memory\n");

 exit(-1);

 }

 // Now storing values in the allocated slots and checking whether it all worked

 *i = 10;

 *x = 3.1415;

 printf("i = %d, x = %f\n", (*i), (*x));

 // Finally, freeing up the allocate memory again to avoid memory leaks

 free(i);

 free(x);

 printf("i = %d, x = %f\n", (*i), (*x));

 return 0;

}
NOTE: When using dynamically allocated memory it is important to de-allocate memory again. If you do not, your program contains a "memory leak", where memory is allocated when your program runs but it is not returned to the operating system. As a rule of thumb, for every 'malloc' there should be a corresponding 'free'!

More about C Programming

Here is an extended and actually useful example of C programming (if you are into complex numbers), first a legitimate way to do it, and then a seemingly better way yet fatally flawed way! It is important to understand the fault in the second approach!
Goal: Make up a new data type “cplx” that models complex numbers z = x + iy. Implement functions to add, subtract, multiply, divide, find absolute value and distance, and print such numbers. Use one file for the main function, one for the library functions, and one header file. Make sure to use a Makefile to compile everything. You could use the program below as a hint (which should compile fine as a single C program) but you should to break up the code below into the header, library, and main code files, and use a Makefile for compiling. And of course implement the various functions that are missing.
#include <stdio.h>

struct cplx

{

 float x;

 float y;

};

void make_cplx(float x, float y, struct cplx *z)

{

 (*z).x = x; // could also use the more common notation z->x instead of (*z).x
 (*z).y = y; // could also use the more common notation z->x instead of (*z).x
}

void add_cplx(struct cplx z, struct cplx w, struct cplx *ans)

{

 (*ans).x = z.x + w.x;

 (*ans).y = z.y + w.y;

}

void println_cplx(struct cplx z)

{

 printf("%f + i * %f\n", z.x, z.y);

}

int main(void)

{

 struct cplx z1, z2, w;

 make_cplx(1.0, 2.0, &z1);
 make_cplx(2.0, 4.0, &z2);

 add_cplx(z1, z2, &w);

 println_cplx(z1);
 println_cplx(z2);

 println_cplx(w);
 return 0;

}

This will work, but is a little awkward to use in the main function.
Here is another approach, using pointers and dynamic memory – the functions dealing with complex numbers seem much easier to use in the main function, because you can 'chain' them. However, this approach has a serious problem – can you figure it out? Note that the program compiles and runs without problem, but there is some serious flaw.
#include <stdio.h>

#include <stdlib.h>

struct cplx

{

 float x;

 float y;

};

struct cplx * make_cplx(float x, float y)

{

 struct cplx *z;

 z = (struct cplx *)malloc(sizeof(struct cplx)); // should check if memory available …
 (*z).x = x;

 (*z).y = y;

 return z;

}

struct cplx * add_cplx(struct cplx *z, struct cplx *w)

{

 struct cplx *ans;

 ans = (struct cplx *)malloc(sizeof(struct cplx)); // should check if memory available …
 (*ans).x = (*z).x + (*w).x;

 (*ans).y = (*z).y + (*w).y;

 return ans;

}

void println_cplx(struct cplx *z)

{

 printf("%f + i * %f\n", (*z).x, (*z).y);

}

int main(void)

{

 println_cplx(add_cplx(make_cplx(1.0, 2.0), make_cplx(3.0, 4.0)));

 return 0;

}
