Saving and Retrieving Byte-Level Data

The DataOutputStream Class
The DataOutputStream lets an application write primitive Java data types to an output stream in a portable way. They can be read back by using a DataInputStream.

 public class DataOutputStream extends FilterOutputStream

 implements DataOutput

 { // constructor

 public DataOutputStream(OutputStream out)

 // selected methods

 public final void writeBoolean(boolean v) throws IOException

 public final void writeByte(int v) throws IOException

 public final void writeChar(int v) throws IOException

 public final void writeInt(int v) throws IOException

 public final void writeDouble(double v) throws IOException

 public final void writeBytes(String s) throws IOException

 public final void writeUTF(String str) throws IOException

 }
 The FileOutputStream Class

A FileOutputStream is used to attach an output stream to a file for writing data.

 public class FileOutputStream extends OutputStream

 { // selected constructors

 public FileOutputStream(String name)

 throws FileNotFoundException

 public FileOutputStream(String name, boolean append)

 throws FileNotFoundException

 public FileOutputStream(File file) throws IOException

 }

WARNING: If a FileOutputStream uses an existing file name, the existing file is erased without warning.

The FileInputStream Class

This class obtains input bytes from an existing file and returns an InputStream attached to that file.

 public class FileInputStream extends InputStream

 { // selected constructors

 public FileInputStream(String name) throws FileNotFoundException

 public FileInputStream(File file) throws FileNotFoundException

 }
The DataInputStream Class

This class lets an application read primitive Java data types from an underlying input stream in a machine-independent way. The data should have been written by a DataOutputStream.

 public class DataInputStream extends FilterInputStream

 implements DataInput

 { // constructor

 public DataInputStream(InputStream in)

 // selected methods

 public final int skipBytes(int n) throws IOException

 public final boolean readBoolean() throws EOFException, IOException

 public final byte readByte() throws EOFException, IOException

 public final char readChar() throws EOFException, IOException

 public final int readInt() throws EOFException, IOException

 public final double readDouble() throws EOFException, IOException

 public final String readUTF() throws EOFException, IOException

 }
If any of these methods attempt to read past the end of the stream, an EOFException will be generated.

Example of Reading/Writing Byte-level Data

[image: image1.wmf]out

fs_out

DataOutputStream

sample.dat

FileOutputStream

import java.io.*;

public class SimpleOutputTest

{ public static void main(String args[])

 { double Pi = 3.1415;

 int i = 10;

 boolean okay = true;

 char cc = 'J';

 String s = "Java by Definition";

 try

 { FileOutputStream fs_out = new FileOutputStream("sample.dat");

 DataOutputStream out = new DataOutputStream(fs_out);

 out.writeDouble(Pi);

 out.writeInt(i);

 out.writeBoolean(okay);

 out.writeChar(cc);

 out.writeUTF(s);

 out.close();

 }

 catch(FileNotFoundException fe)

 { System.err.println(fe); }

 catch(IOException ioe)

 { System.out.println(ioe); }

 }

}

[image: image2.wmf]in

fs_in

DataInputStream

sample.dat

FileInputStream

import java.io.*;

public class SimpleInputTest

{ public static void main(String args[])

 { try

 { FileInputStream fs_in = new FileInputStream("sample.dat");

 DataInputStream in = new DataInputStream(fs_in);

 double Pi = in.readDouble();

 int i = in.readInt();

 boolean okay = in.readBoolean();

 char cc = in.readChar();

 String s = in.readUTF();

 in.close();

 System.out.println("Pi = " + Pi + ", i = " + i);

 System.out.println("okay = " + okay + ", cc = " + cc);

 System.out.println("s = " + s);

 }

 catch(FileNotFoundException fnfe)

 { System.err.println(fnfe); }

 catch(IOException ioe)

 { System.err.println(ioe); }

 }

}

Example:

Create a program that writes a random number of random double values to a file named "doubles.txt". Then create a second program to read all numbers back and find their average. If you write a sufficiently large number of double random values between 0 and 1, can you guess the approximate value of the average you should be getting?
Example:

Create a program that writes two integer values to a file via a data output stream, then open the same file and attempt to read the data as one double value. Does it work? Explain.

Saving and Retrieving Character Data

The PrintWriter Class

The PrintWriter class provides convenient methods for formatted, character-based output to a stream. While the PrintWriter class could be used by itself, it is best used in conjunction with a BufferedWriter class to improve the efficiency of the stream. The methods contained in this class do not throw any exceptions. Instead, the checkError method can be used to inquire whether any operation prior to this call has resulted in an error.

 public class PrintWriter extends Writer

 { // selected constructors

 public PrintWriter(Writer out)

 public PrintWriter(Writer out, boolean autoFlush)

 // selected methods

 public void flush()

 public void close()

 public boolean checkError()

 protected void setError()

 public void print(boolean b)

 public void print(char c)

 public void print(int i)

 public void print(double d)

 public void print(String s)

 public void println()

 }

The methods writing the basic data types are also available in a println version to include a line break.

The FileWriter Class

The FileWriter class connects a file to a character output stream.

 public class FileWriter extends OutputStreamWriter

 { // selected constructors

 public FileWriter(File file) throws IOException

 public FileWriter(String fileName) throws IOException

 public FileWriter(String fileName, boolean append)

 throws IOException

 }
WARNING: A FileWriter will delete an existing file without warning.
The BufferedReader Class

The BufferedReader class reads text from a character-input stream, buffering characters as necessary.

 public class BufferedReader extends Reader

 { // selected constructor

 public BufferedReader(Reader in)

 // selected methods

 public String readLine() throws IOException

 }

A line of text is considered to be terminated by any one of the characters line feed ('\n'), carriage return ('\r'), or carriage return followed immediately by linefeed. If there are no more lines contained in the stream, the readLine method returns null and does not through an exception.

The FileReader Class

The FileReader class is a convenience class to attach files to other classes requiring a Reader class as input.

 public class FileReader extends InputStreamReader

 { // selected constructors

 public FileReader(String fileName) throws FileNotFoundException

 public FileReader(File file) throws FileNotFoundException

 }
Example of Reading/Writing Character-level Data

[image: image3.wmf]bfw_out

fw_out

BufferedWriter

sample.dat

FileWriter

out

PrintWriter

Example:

Create a program to write “Hello World” to a text file, each word in one line.

[image: image4.wmf]reader

f_reader

BufferedReader

sample.dat

FileReader

Example:

Create a program to read a text file with an unknown number of lines. The program should print out each line, prefaced by a sequential line number.

Definition:
The File Class

The File class is used to represent a file, a directory name, or a combination of directory names and file. The file names used are highly system-dependent, but the File class provides convenient methods to access and manipulate files in a system-independent manner. The Java API defines File as follows:

 public class File extends Object implements Serializable, Comparable

 { // constructor

 public File(String pathname)

 // selected fields

 public static final String separator

 // selected methods

 public String getName()

 public String getPath()

 public URL toURL() throws MalformedURLException

 public boolean exists()

 public boolean isDirectory()

 public boolean isFile()

 public long length()

 public boolean delete()

 public File[] listFiles()

 public File[] listFiles(FileFilter filter)

 public boolean mkdir()

 public boolean mkdirs()

 public boolean renameTo(File dest)

 }

_1265032088.unknown

_1265032089.unknown

_1265032090.unknown

_1265032087.unknown

