Object-Oriented Programming

It is easy for us to manipulate real-world objects such as a clock or, after a certain learning period, a car or a computer. Such objects often contain certain information and provide us with means to manipulate that information. A clock, for example, stores the current time and provides us with controls to set the time and retrieve it by glancing at the clock’s display. Moreover, small objects are often part of other objects. Most cars, for example, contain a clock that looks different than a wristwatch but provides the same functionality. Thus, car manufacturers do not have to recreate a clock for every car they produce. Instead, they purchase existing clocks and adjust them for their particular purposes. They do not really need to know anything about clocks, other than how to interface the clock’s control mechanisms with the particular design features they would like to implement in their car. And most of us do not know many details about internal combustion engines, transmissions, and hydraulic suspension systems, yet many of us are perfectly comfortable driving a car by manipulating the appropriate controls.

This concept of hiding an object’s complexities from a user has worked well in the real world, and software designers want to emulate it. They want to create pieces of software that can contain information and provide mechanisms to manipulate that data without bothering a user with the inner complexities of the code. In creating a large program one can draw on smaller software objects, adjust their interface as needed, and produce a working, error-free application without having to study the inner workings of the original objects.

This approach has appropriately been termed object-oriented programming. The goal is to create abstract software objects that exist inside a computer’s memory but can be used and manipulated much like real-world objects. Object-oriented programming revolves around six concepts, which we will cover in the course of the year:

· Classes: The fundamental structure of every Java program, containing data fields and mechanisms to manipulate that data. Classes provide blueprints to construct software objects.

· Instances: Objects constructed according to class blueprints that exist in the memory of the computer. One class can be used to instantiate any number of objects.

· Encapsulation: Allowing or disallowing access to the data and mechanisms that a class or object contains.

· Overloading: Providing multiple definitions for certain mechanisms, allowing them to adjust automatically to different situations.

· Inheritance: A mechanism to impose relationships between classes and their corresponding objects.

· Polymorphism: The ability to deal with multiple related classes based on a common feature, giving an entire class hierarchy the ability to adjust to an appropriate situation.

Any code written in Java is entirely composed of classes and objects. We have previously written Java programs and hence we have already created classes. This section defines classes formally and shows how to use them to manufacture objects.

Classes

Definition:
Classes

A class is the fundamental structure in Java. It is composed of two sections, fields to contain data and methods to manipulate data or perform an action. Every class represents a new reference type that can be used by other classes. Classes are defined using the syntax:

 [public] class ClassName [extends ClassName] [implements InterfaceList]

 { /* list of fields */

 /* list of methods */;

 }

where ClassName is the name of the class, extends indicates that the class is derived from another class and implements indicates that the class has attributes in common with one or more interfaces.

[image: image1.wmf][modifier] [extends ClassName] [implements InterfaceList]

class ClassName

returnType methodName(inputList)

body of method

fieldList;

/* additional methods as necessary */

Figure: Representation of a Class

Every Java program consists of one or more classes that manipulate each other’s fields and use their respective methods to accomplish their tasks. Classes containing the method public static void main(String args[]) are executable. Classes do not need to be executable, and fields and methods in a class do not necessarily need to be prefaced by the keywords public static.

When creating classes, we should initially be less concerned with the inner workings of the class. We should instead think about all possible uses that our class should allow and worry about what we want our class to accomplish not how to accomplish it.

Software Engineering Tip: The hardest part in designing a class is not how to implement it, but to determine the fields and methods it should have. The "has-a" and "does-a" questions can help:

· If a class "has-a" property, then the class needs a field to store that information. Use field names that represent the property they are storing.

· If a class "does-a" certain action, then the class needs a method to perform that action. Use method names representative for the actions they perform.

Example: Simple Address class

Suppose we are working on an address book program. Design an Address class that can store a first name, last name, and email address, and display an address.

Problem Analysis: An address "has-a" first name, last name, and email address, so it needs three fields: one for the first name, one for the last name, and one for the email address. It should perform the action ("does-a") of displaying its value, so it needs at least one method.

Class Implementation: The fields should store strings so they are of type String. The method to display an address requires no input because the address information is part of the class as fields and delivers no output because it will display the address on the screen. We name it showAddress. The class is not a complete program so we do not need the standard main method that was part our previous classes (programs).
	class Address

{ // Fields

 String firstName;

 String lastName;

 String email;

 // Methods

 void showAddress()

 { /* implementation */ }

}

	
[image: image2.wmf]class Address

void showAddress()

body of method

String firstName;

String lastName;

String email;

Figure: Address class

The class can be saved in a file with any name but it must have a .java extension. The preferred file name is Address.java.

Software Engineering Tip: To easily recognize classes, you should capitalize the class name and save each class in a separate file with the same name (including capitalization) as the class name, followed by the .java extension. Fields should be listed first before methods in a class, using names that start with lowercase letters.

We therefore save our class in the file Address.java and compile it by typing javac Address.java. It compiles without problems even though the showAddress method does not have a method body.



Objects and Instantiation

Classes describe the data to store and the methods to manipulate data but they are only an abstraction of the actual existing entity: the object.

Definition:
Object

An object is an entity that has been manufactured according to the blueprint that a class provides. Objects have the type of the class whose specifications were used to manufacture it. Objects should be seen as real (inside the computer) whereas classes are conceptual.
The relationship between objects and classes is similar to the relationship between the blueprints of a car (the class) and the actual car (the object) manufactured on the assembly line according to the specifications of the blueprints.

	[image: image3.png]

	[image: image4.png]

 [image: image5.png]

[image: image6.png]

	Figure: Blueprint of a car (Class) versus actual cars (Objects)

One class can be used to manufacture many objects of its type through a process called instantiation. These objects have identical capabilities but different reference names.

Definition:
Instantiation

Instantiation is the process of creating an object according to the blueprint of a class. Memory is allocated to provide storage space for the fields and methods and any necessary initialization is performed. The keyword new is used to instantiate an object, using the syntax:

 [ClassName] referenceName = new ClassName(paramList);

where ClassName is the name of the class providing the blueprint for the object and referenceName is the name of the object to be instantiated. Each new object gets its own set of data field.
 Methods are created once and shared by objects instantiated from the same class.

[image: image7.png]

Figure: Instantiation process

Example: Instantiating Address objects

Create a class containing the standard main method to create a program. Instantiate three objects of type Address inside that method, where the class Address is as defined before. Compile and execute the new class.

We have already defined the Address class so we need to create another class called, say, AddressTest. The class contains the standard main method and uses new to instantiate three Address objects:

class AddressTest

{

 public static void main(String args[])

 {

 Address friend = new Address();

 Address mother = new Address();

 Address father = new Address();

 }

}

This class should be saved in a file named AddressTest.java and can be compiled by typing:

javac AddressTest.java

of by clicking on the appropriate BlueJ button. The class refers to objects of type Address whose definition was stored in the file Address.java. Both files must be contained in the same directory so that AddressTest can find the definition of Address. Note that if we execute AddressTest nothing will appear on the screen because we have not implemented the methods in the Address class, nor do we specifically execute any method. Only the main method is called automatically by the Java Virtual Machine.

For the short time the main method was running we created three real existing objects of type Address in memory,
 referred to by local variables named friend, mother, and father. Each contained three fields (firstName, lastName, and email) and had access to the shared method showAddress.

[image: image8.wmf]Classes

Objects

class Address

String firstName;

String lastName;

String email;

class AddressTest

Address friend = new Address();

Address mother = new Address();

Address father = new Address();

public static void main(String args[])

firstName

lastName

email

firstName

lastName

email

firstName

lastName

email

new

new

new

provides blueprint for

void showAddress()

body of method

showAddress()

friend

mother

father

void main(String args[])

provides blueprint for

Figure 3.07: Objects instantiated from class


Once an object has been instantiated, its fields and methods can be accessed in various ways:

Definition:
Accessing Fields and Methods

Every object can access its own fields and methods by referring to them by name. Object A can access another object B if object A has a reference name pointing to object B:

· It can use the reference name to refer to object B in its entirety.

· It can access the fields and methods of object B using the dot operator and the syntax refNameForObjectB.memberOfObjectB
· If a method or field is marked as static, you access it using without first instantiating a neew object, using the syntax ClassName.memberOfClass
Every object can refer to itself using the special keyword this and to its own members using this.fieldOrMethodName.

Here is a complete example using our previous Address classes.

Example: Calling on display feature of Address and Parent classes

In a previous example we created an Address class and an AddressTest class to create addresses. Modify the classes as necessary display the addresses.

Problem Analysis: The AddressTest class uses a father, mother, friend objects of type Address to store the information (somehow). To obtain output, we delegate the work:

· Address contains a method showAddress to display the address it stores. We should implement it to display an address in the form "lastName, firstName (email)", but right now we are merely interested in how to call the method so we skip the method implementation.
· The main method of AddressTest can now call on showParents after instantiating a AddressTest object to display the information stored in that object.

class AddressTest

{

 public static void main(String args[])

 {

 Address friend = new Address();

 Address mother = new Address();

 Address father = new Address();

 friend.showAddress();

 mother.showAddress();

 father.showAddress();

 }

}

Note that if our Address class had a static method, we would call on that method in the AddressTest program using the line:

 Address.staticMethodName();

Of course this does not address the question of how to get information into an address for the father, mother, or friend, but that is another question.

� Fields can also be prefaced by the static modifier, in which case they are shared between objects of the same type and are accessed by ClassName.

� A fourth object of type AddressTest is instantiated by the JVM via the command line java AddressTest.

_1008485228.unknown

_1009883395.unknown

_1008409155.unknown

