Jukebox class

The Jukebox class can be used to play simple melodies on the NXT brick. Create a new Java class named ‘Jukebox’ in your Lejos-enabled project. Replace the code in that class by the code below and compile. Then use in your project as described in the comments. Add new melodies (and share with us).

import lejos.nxt.Sound;
/* @version Nov. 2008

 * @author Bert Wachsmuth
 *

 * <h1>Jukebox</h1>

 *

 * This class defines notes as frequencies as well as various songs (defined as

 * 2-D arrays) and let's you play those songs in their own thread. A song can

 * be looped, stopped, and switched any time. Note that the thread continues to

 * run once the class is instantiated - you need to explicitly stop the thread by

 * calling 'poweroff'. Once the thread is turned off, however, you can no longer

 * play any songs.

 *

 * Usage:

 *

 * (1) Create a new Jukebox (which starts the thread)

 *

 * Jukebox player = new Jukebox();

 *

 * (2) To play a song, use the 'play' method

 *

 * player.play(Jukebox.STARWARS_INTRO, false);

 *

 * where the first parameter is the melody and the second one is a boolean

 * value indicating whether to loop the melody (true) or not (false). If a

 * song was already playing it will be turned off and the new one plays.

 *

 * (3) To stop the song, use the 'off' method

 *

 * player.off();

 *

 * (4) When you no longer need the music player, call 'poweroff'

 *

 * player.poweroff()

 *

 * It will terminate the thread and you can no longer use it.

 *

 * Please note that the Lejos Java Virtual Machine (JVM) does not do any

 * garbage collection. You should therefore be careful making 'new' objects.

 * Thus, it would create memory problems if each new song would use a new

 * thread, so this class starts only one thread to play songs as needed,

 * one song at a time.

 */

public class Jukebox extends Thread
{

// Frequencies for defined notes. Add more as needed.

final static int C7 = 2093;

final static int B6 = 1975;

final static int AIS6 = 1865;

final static int A6 = 1760;

final static int GIS6 = 1661;

final static int G6 = 1568;

final static int FIS6 = 1480;

final static int F6 = 1397;

final static int E6 = 1318;

final static int DIS6 = 1244;

final static int D6 = 1175;

final static int CIS6 = 1109;

final static int C6 = 1046;

final static int B5 = 988;

final static int AIS5 = 932;

final static int A5 = 880;

final static int GIS5 = 831;

final static int G5 = 784;

final static int FIS5 = 740;

final static int F5 = 698;

final static int E5 = 659;

final static int DIS5 = 622;

final static int D5 = 587;

final static int CIS5 = 554;

final static int C5 = 523;

// Length of a quarter note

final static int BEAT = 250;

// Sleep time in ms before resuming thread when nothing is playing

final static int SLEEP = 100;

// Indicates a pause

final static int PAUSE = -1;

// Sets the default volume

final static int VOLUME = Sound.VOL_MAX;

// A sample melody

final static int STARWARS_INTRO[][] =

{

{C5, 2*BEAT}, {F5, 4*BEAT},
{C6, 2*BEAT},

{AIS5, BEAT}, {A5, BEAT},
{G5, BEAT},

{F6, 4*BEAT}, {C6, 2*BEAT},
{AIS5, BEAT},

{A5, BEAT}, {G5, BEAT},
{F6, 4*BEAT},

{C6, 2*BEAT}, {AIS5, BEAT},
{A5, BEAT},

{AIS5,BEAT}, {G5, 6*BEAT}, {PAUSE, 4*BEAT}

};

// More melodies

final static int JAWS[][] =

{

{D5, BEAT}, {DIS5, BEAT}, {D5, BEAT}, {E5, BEAT}

};

// Simple sound effect

final static int BACKUP[][] =

{

{C6, BEAT}, {PAUSE,BEAT}, {C6, BEAT}, {PAUSE, BEAT}

};

private int[][] melody = null;

private boolean playing = true;

private boolean looping = true;

/*

 * Constructor sets up variable and starts the thread

 */

public Jukebox()

{

super();

melody = null;

playing = true;

start();

}

/*

 * Plays the melody, either in a loop or just once.

 */

public void play(int[][] melody, boolean looping)

{

try

{

off();

sleep(BEAT);

}

catch(InterruptedException ex)

{

}

this.melody = melody;

this.looping = looping;

}

/*

 * Stops the currently playing song, if any

 */

public void off()

{

melody = null;

}

/*

 * Shuts down the thread

 */

public void poweroff()

{

melody = null;

playing = false;

}

/*

 * Called automatically when thread starts. Do NOT cll this

 * method directly

 */

public void run()

{

while (playing)

{

try

{

if (melody != null)

playTheMelody();

else

sleep(SLEEP);

}

catch(InterruptedException iex)

{

}

}

}

/*

 * Private method to handle the actual playing of the melody.

 * Since this method is private, you can not call it directly -

 * call 'play' instead.

 */

private void playTheMelody() throws InterruptedException

{

int i = 0;

int length = -1;

int note = A5;

int duration = BEAT;

if (melody != null)

length = melody.length;

while (i < length)

{

if (melody == null)

length = -1;

else

{

if (melody != null)

note = melody[i][0];

if (melody != null)

duration = melody[i][1];

if (note != PAUSE)

Sound.playTone(note, duration);

yield();

sleep(duration);

i++;

}

}

if (!looping)

melody = null;

}
}
