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Main headings, tables, equations and figures 

 
Fundamentals of the crystalline state 
 
Translation symmetry is essential; other symmetry (rotation, 
reflection, inversion) may also be present.  Translation symmetry is 
characterised by a lattice, and its basic repeat unit is the unit cell; 
geometry is specified by 3 lengths and 3 angles, some of which take 
special values/relationships if rotation/reflection symmetry is present. 

Space group: the collection of all symmetry operations for a crystal structure.  Symbol is a 
combination of letters and numbers, indicating the symmetry present.  There are 230 space 
groups. 

Asymmetric unit: the unique part of the structure (a fraction of a unit cell).  Operation of 
symmetry except for pure translation generates the unit cell, then operation of translation 
symmetry generates the complete crystal structure. 

Crystal systems 

For the essential symmetry, each type of rotation axis is generic; it could be a proper or 
improper rotation or a screw axis, and mirrors can also be glide planes.  The lattice 
types shown in parentheses can be converted into standard types not in parentheses by a 
different choice of axes, but are used in some cases in order to satisfy other conventions 
or conveniences regarding symmetry and geometry. 

Crystal system Essential symmetry Unit cell restrictions Lattice types 

triclinic none none P 

monoclinic 2 and/or m for one axis α=γ=90° P, C (I) 

orthorhombic 2 and/or m for three axes α=β=γ=90° P, C (A), I, F 

tetragonal 4 for one axis a=b; α=β=γ=90° P, I 

trigonal 3 for one axis a=b; α=β=90°, γ=120° P (R) 

hexagonal 6 for one axis a=b; α=β=90°, γ=120° P 

cubic 3 for four directions a=b=c; α=β=γ=90° P, I, F 

 

Any line, and any plane (or set of regularly spaced parallel planes) in a 3D lattice (crystal 
structure) can be specified by 3 numbers; for lines joining lattice points, and sets of planes 
passing through lattice points, these numbers are integers.  For planes, they are called Miller 
indices, represented by the letters h,k,l. 

 

Crystals and their diffraction patterns 

X-rays are used because their wavelengths are comparable to the sizes of atoms and 
molecules, giving rise to diffraction effects by crystals. 



The diffraction pattern is the Fourier transform of the crystal 
structure, and the crystal structure is the Fourier transform 
of the diffraction pattern.  Any given X-ray beam is 
characterised by its wavelength λ (usually a known single 
value in most diffraction experiments), amplitude |F| 
(intensity I ∝ |F|2), and phase φ (0–360°) relative to other 
beams (important for interference effects when waves are 
added together). 

 
Geometry of diffraction pattern (positions of spots on film/detector, directions of diffracted 
beams) is related to unit cell (lattice) geometry. 

Symmetry of diffraction pattern is related to symmetry of crystal structure (space group). 

Intensities of diffraction pattern are related to nature and positions of atoms within the 
asymmetric unit. 

 
Diffraction by crystals (geometry): the reciprocal lattice, Bragg equation, and Ewald 
sphere 
 
Direct lattice (crystal structure lattice) is defined by three vectors: a, b, c.  Define a reciprocal 
lattice (a*, b*, c*), such that 

a* = (b × c) / V     b* = (c × a) / V     c* = (a × b) / V 
V = a ⋅ (b × c) = b ⋅ (c × a) = c ⋅ (a × b) 

Hence:   a ⋅ a* = b ⋅ b* = c ⋅ c* = 1 
and  a ⋅ b* = a ⋅ c* = b ⋅ a* = b ⋅ c* = c ⋅ a* = c ⋅ b* = 0 

This means that a* is perpendicular to both b and c, etc.  If every set of parallel lattice planes 
is represented by a point such that its distance from the origin is 1/d (the reciprocal of the 
spacing between planes) and the direction is perpendicular to the planes, then all the possible 
points lie at reciprocal lattice points, and the coordinates of each point (counting from the 
origin in three dimensions) are the Miller indices of the plane: (ha* + kb* + lc* = d*hkl, a 
vector with length 1/dhkl).  As a consequence of the Bragg equation (below), the reciprocal 
lattice is a convenient representation for the geometry of the diffraction pattern, and every 
diffracted beam (X-ray reflection) is labelled by the three indices h,k,l, specifying the 
associated lattice planes. 

 



Diffraction in one dimension (left): for rays scattered by two adjacent points in the row  
 

path difference = a sinψi + a sinψd = hλ 
 
where ψi and ψd are the angles of the incident and diffracted beams as shown, λ is the 
wavelength, a is the one-dimensional lattice spacing, and h is an integer (positive, zero, or 
negative).  For a given value of ψi (a fixed incident beam), each value of h corresponds to an 
observed diffraction maximum and the equation can be used to calculate the permitted values 
of ψd, the directions in which intensity is observed.  The result is a set of bright fringes.   

Using vector notation: if s and s0 are unit vectors along the directions of the diffracted and 
incident beams, and a is the lattice translation vector, then 

a · (s − s0) = hλ 

There are three such equations, one for each dimension, and all must be satisfied 
simultaneously (Laue equations); this requires three integers h, k, l and reference to all three 
lattice vectors a, b, c. 

Alternative representation for three dimensions (right): for rays reflected by two adjacent 
planes 

path difference = 2dhkl sinθ = (n) λ 

Using vector notation: if d*hkl is the reciprocal lattice vector for the reflecting planes, then this 
vector is parallel to s − s0 and 

(s − s0)/λ = d*hkl = ha* + kb* + lc* 

The Ewald sphere construction is a way of showing how rotation of a crystal (and its 
reciprocal lattice with it) leads to the Bragg equation being satisfied in certain orientations, 
generating observed diffracted beams.  A sphere of radius 1/λ is centred on the crystal, with 
the incident beam in a fixed direction.  The origin of the reciprocal lattice is placed on the 
sphere opposite the incident beam, and the crystal rotates.  Whenever a reciprocal lattice point 
touches the surface of the sphere, the Bragg equation is satisfied for this set of lattice planes, 
and a Bragg reflection occurs; the direction of the diffracted beam is from the centre of the 
sphere to the reciprocal lattice point.  This allows us to predict both where and when 
diffraction will occur, if the lattice parameters and crystal orientation are known. 

 



Diffraction by crystals (symmetry) 
To a first approximation, all diffraction patterns have inversion symmetry; the point group 
symmetry of the pattern is related to the space group of the crystal and is called the Laue 
group.  There are 11 possible Laue groups.  Other aspects of the space group symmetry are 
revealed in ‘systematic absences’, special subsets of the data that systematically have zero 
intensity. 

 

Diffraction by crystals (intensities) 
Intensities of diffracted X-rays are due to interference effects of X-rays scattered by all the 
different atoms in the structure.  The diffraction pattern is the Fourier transform of the crystal 
structure, corresponding to the pattern of waves scattered from an incident X-ray beam by a 
single crystal; it can be measured by experiment (only partially, because the amplitudes are 
obtainable from the directly measured intensities via a number of corrections, but the relative 
phases of the scattered waves are lost), and it can be calculated (giving both amplitudes and 
phases) for a known structure.  In turn, the crystal structure is the Fourier transform of the 
diffraction pattern and is expressed in terms of electron density distribution concentrated in 
atoms; it can not be measured by direct experiment, because the scattered X-rays can not be 
refracted by lenses to form an image as is done with light in an optical microscope, and it can 
not be obtained directly by calculation, because the required relative phases of the waves are 
unknown. 

The forward Fourier transform (diffraction experiment or calculation from known structure): 
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The reverse Fourier transform (calculation, requiring a knowledge of phases somehow): 
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These form the basis of crystal structure determination by X-ray crystallography. 

 

Example of a section through an electron density map (reverse Fourier transform), showing a 
largely planar structure. 

 



 

Crystal structure determination in outline 
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