
MAXIMIZING THE THROUGHPUT OF CDMA 
DATA COMMUNICATIONS 

 
David Goodman, Zory Marantz, Penina Orenstein, Virgilio Rodriguez  

Department of Electrical and Computer Engineering 
Polytechnic University 
Brooklyn, NY, USA 
dgoodman@poly.edu

Abstract—We analyze aggregate throughput as a function of the 
transmitter power levels and the number of terminals sending 
data to a CDMA base station. We find that when noise and out-
of-cell interference are negligible, received power balancing 
maximizes the aggregate throughout of the base station, provided 
the population of active terminals does not exceed an optimum 
size. The optimum number of active terminals depends on the 
CDMA processing gain and the details of the physical layer and 
data link layer. These details are summarized in a univariate 
frame success function. When noise is present, power balancing is 
suboptimal mathematically but attractive for practical 
implementation. 
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I. INTRODUCTION 
 

We analyze the throughput of a CDMA base station receiving 
data from N transmitters, all operating at the same constant bit 
rate. We consider two resource management issues: 
transmitter power control and the number of terminals that 
should be admitted to the system in order to maximize base 
station throughput.  
 
Early work on uplink CDMA power control focused on 
telephone communications and determined that to maximize 
the number of voice communications, all signals should arrive 
at a base station with equal power [1]. Initial studies of power 
control for data communications focused on maximizing the 
utility of each terminal, with utility measured as bits delivered 
per Joule of radiated energy [2,3].  Our recent work [4-7] 
adjusts the power and rate of each terminal to maximize ΣiβiTi, 
the aggregate weighted throughput of a base station. Ti b/s 
denotes the throughput of terminal i and the weight βi admits 
various interpretations, such as priority, utility per bit, or a 
monetary price paid by the terminal. This work assumes that 
the number of active terminals is fixed, their data rates are 
continuous variables to be optimized, and that the system is 
interference limited (noise is negligible). In the present paper, 
we set all the weights equal to unity, and take the data rates to 
be identical and fixed, but we view the number of active 
terminals as a key variable to be optimized. We also consider 

random noise to be non-negligible, which is essential when 
out-of-cell interference is significant, and included in the noise 
term.  
Other authors have considered situations relevant to ours. For 
example, Ulukus and Greenstein [8] adjust data rates and 
transmitter power levels in order to maximize network 
throughput. Lee, Mazumdar, and Shroff [9] adapt data rates 
and power allocation for the downlink, and provide a sub-
optimal algorithmic solution based on pricing. Sung and Wong 
[10] assume that the terminals’ data rates are different but 
fixed, and maximize a capacity function.   
 
The research reported in this paper finds that there is an 
optimum number of active terminals. When noise and out-of-
cell interference* are negligible, the transmitter power levels 
should be controlled to achieve power balancing. With power 
balancing all signals arrive at the base station with equal 
power.  On the other hand, when noise and interference from 
other cells are not negligible, the mathematical power 
optimization problem is more complicated. The optimum set 
of transmitter powers depends on the maximum achievable 
signal-to-noise ratios of the N terminals. The optimum 
received power levels are unequal. Nevertheless power 
balancing remains attractive for practical implementations. 
 
We also find that in order to maximize base station throughput 
with any power control algorithm, the number of active 
transmitters, N, should be limited to N ≤ N*, where N*, is a 
property of the frame success function f(γ), the probability that 
a terminal’s data packet is received successfully as a function 
of γ, the received signal-to-interference-plus-noise ratio 
(SINR). The specific form of f(γ) depends on the details of the 
CDMA transmission system including the bandwidth, packet 
size, modem configuration, channel coding, antennas, and 
radio propagation details. Our analysis applies to a wide class 
of practical frame success functions, each characterized by a 
smooth S-shaped curve [4]. ,  

                                                        
* To be concise we refer to the combination of noise and inter-cell interference 
simply as “noise”. The analysis does not distinguish the two impairments. It 
considers only their combined power. 
 



 
The next section presents the CDMA transmission system and 
a statement of the throughput optimization problem. The 
analysis in Section III assumes that the performance of each 
link is limited by interference from other transmissions in the 
same cell  (no additive noise and no interference from other 
cells). Section IV analyzes the effects of noise and out-of-cell 
interference.  

II. THE OPTIMIZATION PROBLEM 
A data source generates packets of length L bits at each 
terminal of a CDMA system. A forward error correction 
encoder, if present, and a cyclic redundancy check (CRC) 
encoder together expand the packet size to M bits. The data 
rate of the coded packets is Rs b/s. The digital modulator 
spreads the signal to produce Rc chips/s. The CDMA 
processing gain is G=W/Rs, where W Hz, the system 
bandwidth, is proportional to Rc. Terminal i also contains a 
radio modulator and a transmitter radiating Pi watts. The path 
gain from transmitter i to the base station is hi and the signal 
from terminal i arrives at the base station at a received power 
level of Qi=Pihi watts. The base station also receives noise and 
out-of-cell interference with a total power of σ2 watts. The 
base station has N receivers, each containing of a demodulator, 
a correlator for despreading the received signal, and a cyclic 
redundancy check decoder. Each receiver also contains a 
channel decoder if the transmitter includes forward error 
correction.  
 
In our analysis, the details of the transmission system are 
embodied in a mathematical function f(γ), the probability that 
a packet arrives without errors at the CRC decoder. The 
dependent variable γ, is the received SINR. For terminal i,  
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Acknowledgment messages from the receiver inform the 
transmitter of errors detected at the CRC decoder that have not 
been corrected by the channel decoder. The transmitter 
employs selective-repeat retransmission of packets received in 
error.  
 
In parts of our analysis we assume that intra-cell interference 
dominates the total distortion and study system performance 
when σ2=0. When  σ2>0, we define the signal-to-noise ratio 
of receiver i as si=Qi/σ2 and rewrite Equation (1) as 
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In cases of practical interest f(γ) is a continuous, increasing S-
shaped function of γ, with f(0)=2-M≈0 and f(∞)=1 [4].  
 
If the probability of undetected errors at the CRC decoder is 
negligible, the throughput of signal i, defined as the number of 
information bits per second received without error, is: 

)( isi fR
M
LT γ=     b/s,                                          (3) 

The aggregate throughput, Ttotal, is the sum of the N individual 
throughput measures in Equation (3). Assuming that L, M, and 
Rs are system constants, we analyze the normalized throughput 
U defined as 
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U is dimensionless and bounded by 0≤ U≤ N. 
 
The aim of our optimization study is to find the transmitter 
power levels, Pi, that maximize U given N, the number of 
terminals transmitting simultaneously. We then examine the 
maximum throughput as a function of N in order to find the 
number of simultaneous transmitters that results in the highest 
normalized throughput. To find the optimum transmitter 
power levels, it is convenient mathematically to maximize 
Equation (4) with respect to the received powers Qi, Q2,…,QN. 
To do so, we differentiate Equation (4) with respect to each of 
the received power levels Qi. We then examine the N 
derivatives under the power balancing condition Qi=Q for 
i=1,2,…,N. Under this condition, all of the derivatives are 
equal. They have the following properties. 
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These formulas indicate that when performance is limited by 
intra-cell interference (σ2=0), it is possible that maximum 
throughput occurs when all signals arrive at the base station at 
the same power level. The optimization problem is more 
complex when σ2>0.  

III. MAXIMUM THROUGHPUT, NO ADDITIVE NOISE 
Before analyzing performance for arbitrary values of N, we 
examine the two-terminal case (N=2) to gain insight into the 
effects of power levels on base station throughput. 

A. Two terminals 
The simplest non-trivial maximization of Equation (4) occurs 
when N=2 and σ2=0  [5]. In this case the normalized 
throughput U is a function of just one variable, z=Q2/Q1. 
Moreover, γ2=Gz and γ1=G/z. Adopting the notation 
U2(z)=f(Gz)+f(G/z) as the normalized throughput when N=2 
and σ2=0, we find that dU2/dz=0 at z=1.  This suggests that 
U2(1)=2f(G) could be a local maximum or a local minimum, 
depending on the sign of the second derivative at z=1. 
Examining the second derivative for arbitrary S-shaped f(γ), 
we find that U2(1) is a local minimum at low values of G and a 
local maximum at high values. Specifically,  
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Therefore, the sign of the second derivative of U2 is the same 
as that of the derivative of xf’(x). for the class of functions f(x), 
xf’(x) has a bell shape reaching a single maximum at some 
point, x=G*. Therefore, the derivative of xf’(x) is positive for 
any x to the left of G*, and is negative otherwise. This means 
that U2(1) is a local maximum when G is large enough to 
exceed G*, and is a local minimum otherwise. 
 
When z=1 yields a local minimum, we must determine 
whether there is a global maximum at the boundaries of the 
feasible region; i.e. at z=0 and z=∞.  Even when z=1 is a local 
maximum, we must consider the possibility that the global 
maximum lies at the boundary of the feasible region. This 
suggests that we compare the equal-received-power condition 
(z=1) with the condition that terminal 2 does not transmit at all 
(z=0). The comparison reveals that z=1 produces higher 
throughput when 2f(G)>1, while z=0 produces higher 
throughput when 2f(G)<1. Accordingly we define the critical 
processing gain, Gc as the value of G for which f(G)=0.5. Gc 
has the property that single terminal transmission (z=0 or 
z=∞) is better than equal-received-power transmission when 
G<Gc and conversely, when G>Gc. Because G is proportional 
to bandwidth, we can state that the system requires a 
bandwidth corresponding to at least G=Gc  to support two data 
terminals. 

 
As a numerical example, we refer to the frame success 
probability for the non-coherent frequency shift keying 
modem and the frame size M=80 considered in our previous 
work [2-7]. In this case 
 
 f(γ)=[1-0.5exp(-γ/2)]80 (7) 
 
and f(G)=0.5 at a processing gain G=Gc=8.12. Likewise, 
G*=7.95 (when the processing gain exceeds this value, z=1 is 
a local maximizer). This suggests that with a processing gain 
G≤8 it would be better to turn off the transmitter in one of the 
terminals and let the other terminal use the entire base station. 
With G≥9, it would be better to have both terminals 
transmitting to achieve equal received power. Figure 1 confirms 
that this is the case. It shows U2(z), normalized throughput as a 
function of the received power ratio (with z plotted on a log 
scale), for six values of processing gain.  
 
At the equal power condition (z=1), we observe that 
U2(1)<1=U2(0) for G=4, G=7 and G=8. When G=9, G=16, 
and G=20, U2(1)>1.  

B. Arbitrary number of terminals 
 
The first part of Equation (5) encourages us to explore power 
balancing to determine whether it provides maximum 
throughput or minimum throughput. Rather than examine 
second derivatives, we extend the approach adopted in the 

previous Section for N=2. To do so, we assume that signals f 
from K transmitters arrive at the base station with equal power 
and that the other N-K terminals turn off their transmitters. 

 
Figure 1: If the processing gain is at least G=9, the normalized throughput is 
maximum when the two transmitters are active. Otherwise, it is better to turn 
one of them off. 

 
First we observe that when Qi=Q for i=1,2,…,K and σ2=0, 
Equations (1) and (3) imply  
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Here, the notation U(K) refers to the power balancing 
throughput as a function of K. We observe that for values of 
G>Gc this function has a maximum value for an integer 
K=N*≥2. We infer that the throughput is maximum when N* 
signals are received with equal power and the other N-N* 
signals are not transmitted at all. Our analysis leads to the 
observation that maximizing Equation (8) with respect to K is 
equivalent to maximizing f(γ)/γ. For the class of functions f 
being considered, f(x)/x has a unique maximum at the point 
where a line from the origin is tangent to f(x) [4]. We use the 
notation γ* for the signal-to-interference ratio that maximizes 
f(x)/x. γ* is the unique solution to the equation 
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For maximum throughput, the system should operate with a 
value of K that produces γ=G/(K-1)≈γ∗. Since K has to be an 
integer, we infer that N* is the integer just above or just below 
1+G/γ*. In our numerical example with the frame success 
probability function in Equation (7), γ*=10.75. For example, 
with G=128, 1+G/γ*=12.90. In Figure 2, we have 
U(12)=10.65, U(13)=10.71, and U(14)=10.46, which implies 
N*=13. 
  



 
Figure 2: With processing gain G=128, the analysis predicts that the optimum 
number of terminals N*≈12.90. The graph confirms this. Throughput is 
maximum with N=N*=13. 

IV. MAXIMUM THROUGHPUT WITH NOISE PRESENT 
 

We now expand the study to take into account the effects of 
additive noise and interference from other cells. The total 
power in these impairments is σ2 watts (and we refer to them 
together as “noise” to be concise). The noise appears at the 
receiver as an additional signal that does not contribute to the 
overall throughput. The system has to use some of its power 
and bandwidth resources to overcome the effects of the noise.  
The effects of noise depend on the power limits of practical 
terminals. With unlimited power, we would increase all the 
received powers Qi indefinitely until the effect of the noise is 
negligible. To account for the power limits, let Pi,max denote 
power of the strongest possible signal transmitted by terminal i  
and Qi,max=Pi,maxhi, the corresponding received signal. The 
maximum signal-to-noise ratio of terminal i is si,max=Qi,max/σ2.   
In our analysis, we order the labels of the terminals such that 
Q1,max≥Q2,max≥…≥QN,msax. In many situations this ordering 
implies that terminal 1 is closest to the base station and 
terminal N is most distant. 
 

A. Two terminals 
 
With σ2=0 and N=2, we derived two principal conclusions: 1) 
there is a critical processing gain, Gc, that permits two 
terminals to share the channel with higher total throughput 
than one terminal alone can achieve, and 2) when G>Gc, the 
throughput is maximum when both signals arrive at the base 
station with equal power. This section explores the same 
issues in the presence of additive noise, σ2>0.  
With Q2,nax≤Q1,max, it is reasonable to assume that when 
terminal 2 is admitted to the system, it transmits with 
maximum power to achieve Q2=Q2,max. To explore power 
balancing, we find that ∂U/∂Q1 >0 at Q1=Q2,max. This implies 
that higher throughput can be achieved at a value of  
Q1>Q2,max than with Q1=Q2,max. Thus, we conclude that with 

σ2>0, power balancing is sub-optimal and the throughput with 
Q1=Q2 is a lower bound on the maximum possible throughput. 
 
When Q1=Q2=Q2,max the lower bound is 
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When Q2=0, U=U1=f(Gs1) ≤1. It follows that a sufficient 
condition for admitting two terminals is U2≥1. We denote the 
processing gain necessary to meet this condition as Gcc. 
Equation (10) implies that the minimum Gcc  that achieves 
U2≥1 satisfies: 
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Recalling that with σ2=0, the critical processing Gc satisfies 
f(Gc)=0.5, we conclude that noise increases the bandwidth 
sufficient for admitting two terminals by the factor 
(s2,max+1)/s2,max.
 
Another way to assess the effects of noise is to consider the 
processing gain fixed at G>Gc and examine Equation (10) to 
find the value of s2,max sufficient for U2≥1.  This analysis leads 
to the conclusion that a sufficient condition for admitting two 
terminals is: 
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This critical SNR corresponds to a critical distance, dc meters 
between transmitter 2 and the base station. When the actual 
distance, d>dc, system throughput is higher when Q2=0. To 
determine dc, recall that s2,max=P2,maxh2/σ2, where h2 is the 
distance-dependent path gain of terminal 2. Referring to a 
simple propagation model in which h2=const/(d2)α, we adopt 
the policy Q2=Q2,max when 
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otherwise Q2=0. 

Figure 3 illustrates the tradeoff between processing gain and 
operating range for the system studied in the other numerical 
examples in this paper, in which Gc=8.12. The graph pertains 
to α=3.5 and constPmax/σ2=1010. This scaling factor implies 
that a terminal transmitting with maximum power at a distance 
100 meters from the receiver achieves SNR s2=1000. In 
Figure 3, the operating range increases rapidly as a function of 
processing gain as G increases from G=Gc=8.12 to G≈15. 
Then, further increases in processing gain bring a more 
gradual increase in operating range. 
 
 



 
Figure 3: Operating range of the weaker terminal as a function of processing 
gain, G=W/Rs. As the processing gain increases, the terminal can transmit 
from a longer distance with throughput ≥1. 
 

B. Arbitrary Number of Terminals 
 
Extending the analysis for N=2 terminals, we assume that 
terminal N, with minimum Qi,max, transmits at maximum 
power, PN=PN,max and achieves a signal–to-noise ratio sN,max. If 
all other terminals adjust their transmitter powers to achieve 
Qi=QN,max, the normalized throughput, according to Equations 
(2) and (4) is 
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Comparing this formula with Equation (8) we observe that to 
overcome the effects of noise, the system could operate with a 
bandwidth sufficient to produce a processing gain 
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 Therefore, to overcome the effects of noise, the system could 
expand its bandwidth by the factor 1+1[(N-1)sN,max]. 

Alternatively, the system could maintain the optimum 
throughput per terminal of the noiseless system by reducing 
the number of active transmitters from N to N-1/sN,max. This 
suggests that the noise appears to the system as 1/sN,max 
interfering transmitters that make no contribution to the 
aggregate throughput. 
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