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Abstract

Area-wide traffic jams develop through the propagation of queues from link to link, a process that resembles the growth of branches on a
tree. The process is not well understood. In this paper, simple models for jam growth arising from a single bottleneck are developed for an
idealized grid network. Under these idealized conditions, it has been shown that there are essentially two possible spatial configurations for a
traffic jam on the type of network considered, each having a characteristic form sharing some of the properties of a fractal. More important,
the models highlight an interesting dilemma in traffic management. A strategy that aims to minimize the rate of growth of a jam by a suitable
allecation of queue storage space will actually encourage gridlock at the heart of the congested area, and conversely, a strategy that aims to
defer gridlock will result in quenes spread over a wider area. Extensive channelization (nermally advocated in the interests of efficient traffic
flow and safety) will also encourage longer gueues. With hindsight, these conclusions seem obvious for any network whether imaginary or
real, but they do not seem to have appeared in the literature, and the models give some indication of the size of the effects involved. © 1998

Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many countries, congestion has become endemic, with
traffic jams spreading over large tracts of urban network
throughout the working day. Consequently, there is a need
to study the process of traffic jam formation and growth in
its own right, so that new techniques for controlling traffic
jams can be developed. These should include not only the
‘high technology’ solutions that are currently being
researched worldwide, but also various forms of low-cost
traffic management measure involving channelization, turn
restrictions and traffic signal systems aimed at controlling
the development of queues (Huddart and Wright, 1989;
Wright and Huddart, 1989a, b),

Here, we propose a simple analytical model for jam
growth, compare it with a computer model, and draw
some qualitative conclusions about the nature of traffic
jams and how they might be inhibited via simple queue
management measures.

The networks are idealized, uniform, one-way rectangu-
far grid systems. The theoretical model assumes steady-state
demand conditions, whereas the simulation model allows
for stochastic variation.

Clearly, our approach sacrifices a great deal of realism.
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and the results are not intended to be immediately applicable
to real networks. However, they yield qualitative insights
which may lead to a better understanding of the congestion
problem in general terms. In particular, they predict certain
features of jam behaviour that we did not expect, and point
to low-cost strategies for traffic management.

L1 Seurces of traffic jams

A traffic jam can start in one of three ways:

1. A temporary obstruction.

2. A permanent capacity bottleneck in the network itself,

3. Stochastic fluctuation in demand within a particular
sector of the network, leading to spillback and queue
propagation.

We are concerned only with jams arising from a single
source that might be categorized under (1) or (2). Whichever
of these applies, one would expect the subsequent process of
jam development to be the same.

1.2. Spillback

The discharges of vehicles into the various exits from a
road link are unlikely to be independent, because (a)
vehicles making different turning movements may share
the same traffic lanes, and (b) even if there is a separate



24 C. Wright, P. Roberg/Transport Policy 5 (1998) 23-35

- Left-turning vehicles
<:| Other vehicles

Fig. 1. Interference between turning vehicles and ahead vehicles on a road link where the turning discharge js obstrucied.

turning lane or lanes for each exit, drivers do not necessarily
position themselves in the correct lane at the entrance to the
link under consideration—there is usually a certain amount
of weaving between the entrance and the exit of a link dur-
ing which the different turning movements interfere with
one another’s progress,

If a particular exit (say, the left-turn exit} is blocked,
vehicles intending to turn left will form a queue that spills
back along the link. If lane discipline is not perfect, the
queue may eventually spread across the other lanes and
block all the traffic (Fig. 1).

Very little is known about the mechanism of interaction
between queues in practice. Here, we shall picture a road
link as divided into two distinct zones: a downstream queus
storage area where vehicles are organized into separate turn-
ing movements, and an upstream ‘reservoir’ where the turn-
ing movements are mixed. The interactions occur at the
transition between these two zones.

1.3. Queue propagation

Starting from an initial obstruction located somewhere
near the centre of the study area, we visualize a fraffic
Jjam as propagating from link to link via a branching process,
each queue generating new branches at each junction in
turn. Initially, the topology of the branches resembles that
of a simple tree, but at some stage, a queue will tail back
around four sides of a block to form a closed loop. This may
be repeated elsewhere, with additional closed circles, so that
the tree evolves into a form that would more accurately be
described as a ‘lattice’.

Note that the pattern of queune propagaticn in our model
depends only on the interference between turning move-
ments, not on the origin—destination movements.

1.4. Quantifying the severity of a traffic jam

It is possible to quantify aggregate journey times and
delays within our models, but we have found it easier to

use simpler measures. The first is the time taken for gridlock
1o develop following an obstruction (the longer the time
taken, the better). The second measure is the rate of growth
of the traffic jam as a whole, where the size of the jam at any
particular moment is represented in terms of the number of
city blocks enclosed within the jam boundary. By ‘jam
boundary’, we mean an imaginary polygon joining the
outer extremities of the queues at any particular moment
in time. This is not a rigorous concept, but it is intuitively
a useful one when dealing with jams that are spread out over
a large area of network.

2. An analytical model for queue propagation on one-
way rectangular grid networks

2.1. Model assumptions

The model networks consist of two sets of parallel one-
way roads at right angles, with the direction of traffic alter-
nating between neighbouring roads, and the roads at equal
spacing. There are no intermediate origins or destinations
within any of the links, and only the severed links on the
boundary act as traffic sources and sinks.

Vehicles travelling along any given link may choose from
two possible movements at the downstream junction:
‘ahead’ and ‘wrning’. The turning movements alternate
between left and right turns at successive junctions along
any given road.

Conversely, at any given junction, vehicles may arrive via
either of two approaches. These have equaly priority; by this
we mean that the opportunities for discharge are shared
between the approaches in proportion to the demands.
Now, in our analytical model, the discharge rate across
each stopline is constant: it changes only when a queue
spills back over the stopline from downstream, reducing
the flow instantaneously to a lower but constant level
(which may be zero). In effect, therefore, we are
picturing cach junction as controlled by a traffic signal
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Fig. 2. Assumed sequence of quene spillback within a one-way road link.

which has very short cycle times, and is undersaturated for
all approaches.

We assume that there is no ‘cross-blocking’, i.e. the spill-
back does not block crossing traffic at the upstream junction.
Instead, vehicles wait on their respective approaches until
there is space for them to proceed. (In practice, drivers are
not always so well disciplined, but we have not pursued this
aspect here.)

Each link contains just two segregated queue storage
areas terminating at the downstream stopline: one for the

‘ahead’ movement and one for a turning movement (see
Fig. 2). Each is of constant width: it may consist of one or
more lanes, but there are no shared lanes. Upstream, there is
a ‘reservoir’ that feeds into both of them. Tt occupies the full
width of the road. One can visualize the reservoir as being
channelized (i.e. it may possess lane markings), but within
this area, vehicles are allocated randomly between the lanes
regardless of their intended direction of movement at the
downstream junction. The mechanism of queue spillback
within these storage areas will be described later.
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When a link fills up with vehicles, the jam will propagate
to further links immediately upstream. Additionally, the
following assumptions are made:

¢ The flow between any origin—destination pair is con-
stant, Furthermore, the route used by each driver is
effectively fixed in advance, and in particular, drivers
do not change their routes in response to congestion.

e For the purpose of the anatytical model, only the deter-
ministic component of flow is taken into account, i.e. we
ignore stochastic variations, together with any cyclic
variations caused by alternate red and green periods at
traffic signals.

e Inthe absence of any obstruction, the ‘ahead’ flows at all
the stoplines are the same, and the turning flows at all the
stoplines are the same irrespective of whether they are
turning left or right (but not necessarily equal to the
ahead flows).

s  When unobstructed, the stopline capacities of the var-
ious junction approaches, and individual lanes within the
junction approaches, are fixed, and proportional to the
width of road occupied by the lanes under consideration.
Specifically, the capacity per unit width is the same for
all ‘ahead’ queues, and the capacity per unit width is the
same for all murning queues (but not necessarily the same
as for the ahead queues).

* The width of the upstream reservoir on each link is uni-
form aleng its length and the same for all links. Simi-
larly, the width of the ahead queue storage area is
uniform and the same for afl links, and the width of
the turning queuve storage area is uniform and the same
for all links. The total stopline width (i.e. the ahead and
turning storage areas combined) is greater than or equal
to the upstream reservoir width.

¢ The density of vehicles per unit area of quene storage
space is the same for all queues.

* The speeds of all vehicles are assumed to be the same
everywhere on the network untl they enter spillback
queues. When a vehicle enters a queue, its speed instan-
taneously falls to that of the other vehicles in the queue,
which is controlied by the discharge rate of vehicles at
the head of the queue.

2.2. Notation

We shall use the following notation:

ta Time taken for a capacity restriction affecting the ahead dis-
charge from a link wo propagate to the upstream end of the link

R Corresponding ume taken for a capacity restriction affecting the
turning discharge from a link to propagate Lo the upstream end of
the link

qa The demand for ahead movement at the downstream exit from
each link when there is no obstruction to flow, in vehiclesfunit
time

LR The demand for turning movement (i.e. left or right turns) at the
downstream exit from each link when there 13 no ohstruction o
flow, in vehicles/unit time

7l Total demand on each link {equal to ¢, + g(&)
c Ratio of discharge capacily 10 demand for a link
.
N Total number of vehicles that can be stored in a link
[+ Preportion of a segregated queucing arca devoted t¢ ahead

gueue storage {the proportion devoted to storage of the tuming
queue will then be 1 — }

@ Equal to g 4/g: proportion of vehicles travelling in the ahead
direction
o Proportion of the arca of a link devoted to storage of segregated

quenes (the proportion devoted to the upstream reservoir will
thenbe | — o). Notethat 0 < g << ].

2.3. Link propagation times

An important characteristic of the sysiem is the time
taken for a queue to propagate along the whole of a link,
If this link propagation time is small, the jam will escalate
quickly.

Now, a downstream obstruction may impinge on the link
in either of two distinct ways:

1. The ahead discharge flow is reduced from g, 10 cqa,
when ¢ < 1.

2. The turning discharge flow is reduced from gz to cgrp,
when ¢ << 1.

If the ahead discharge flow is reduced, a queue will buiid
up until it fills the ahead storage area. It is then assumed to
spread across the whole width of the road, blocking the
upstream reservoir. Within this area, ahead and turning
vehicles will be mixed together in proportion to their respec-
tive demands. If follows that the throughput of all vehicles
will now be reduced by the factor ¢. The queue in the reser-
voir will in turn build up and spill back to the upstream
entry. This sequence of queue spillback and blocking is
shown diagramaticalty in Fig, 2. The overall link propaga-
tion time, f,, will be the- sum of the individual spillback
times for the ahead storage area and the upstream reservoir.

On the other hand, if the turning discharge is reduced, the
turning storage area will fill up first, and then the upstream
reservoir, in which case the overall link propagation time ¢y
will be the sum of individual spillback times for the turning
storage area and the upstream reservoir.

We can now derive expressions for 74 and £ in terms of
the stopline width allocation parameter o and the segregated
proportion parameter o, We can write, for example,

N ol — &)
WTIRE 00 s1—e)

See Appendix A for the derivation of this result.

(0
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2.4. Spatial structure of the idealized traffic jam

Once a link has filled up with quering traffic, its capacity
to accept vehicles from either of the two upstream links
feeding into it will be affected in the same way: it will
also be reduced to a value ¢ times the demand. Effectively,
the initial obstruction is propagated to the two upstream
links, which will now behave in a similar way.

The queues branch out along the quickest propagation
‘routes’ to form a gueue propagation ‘tree’, which here
takes on a regular geometrical form. To find its shape,
assume that the initial obstruction occurs at the downstream
end of a particular link, close to the stopline. It may affect

1. The *ahead’ vehicles,
2. The turning vehicles, or
3. Both.

Note that, after the first link is full, the subsequent pattern
of queve propagation will be the same for all three of the
above cases: the only element which varies is the time taken
for the first link to overflow.

However, the growth paths are affected by the relative
values of the link propagation times £, and # . It is possible
to distinguish between three possible configurations, corre-
sponding to the following three conditions:

Type i 14 < 118
Type II: t4 > t1x
Type HL: t4 = tp
From Lg. (1), it is clear that these conditions are respec-
tively equivalent to:

a<¢ (2)
a>é (3)
o= {4)

Condition (4) represents the case where the segregated
queue storage area is ullocated between the ahead and turn-
ing streams in eactly the same ratio as the demands: this
might be referred to as a ‘balanced’ layout. Mathematically,
it represents a degenerate case.

Conditions (2) and (3), on the other hand, represent
‘unbalanced’ layouts. Condition (2} implies that propor-
tionately less storage is devoted to the ahead traffic, given
that its discharge is restricted by a given factor ¢, a blocked
ahead queue tails back more quickly than a blocked turning
queue. Condition (3) implies that proportionately less
storage is devoted to the turning traffic, so that a blocked
turning queue tails back more quickly than a blocked ahead
gueue.

It follows that, in the case of Type T jams, queue growth
takes place most quickly in a straight line along one axis of
the grid network. Other, secondary queues branch out in
straight lines at right angles from this primary queue, and
vet more queues branch out from the secondary queunes, and

A

Fig. 3. Queue propagation paths for the case where 14 << 25 (Type I jams).
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so on. The resuliing propagation paths are shown in Fig. 3.
The pattern is dominated by four primary paths (shown as
heavier lines) that radiate from the source in four compass
directions. They divide the system into four quadrants, each
having a distinct *grain’ to its growth pattern.

In the case of Type II jams, the queues form small clusters
of tightly packed ‘curls’, and as shown in Fig. 4, the overall
pattern can be divided this dme into eight sectors, each’
having a distinct “grain’.

An example of a Type 1 traffic jam is illustrated in Fig, 5,
which shows the progress of queues over a period of 10 time
units after the occurrence of the original blockage, for a grid

Fig. 4. Queue propagation paths for the case where £4 > /g (Type Il jams),
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Fig. 5. Congestion lattice with 2, = 1 unit and 7, = 3 units (Type I jam). A
total of 10 time units have elapsed since the original obstruction.

where the ahead link propagation time is 1 unit and the
turning propagation time 3 units. An example of a Type II
jam is illustrated in Fig. 6, for a grid where the ahead link
propagation time is 3 units and the turning propagation time
t unit. In each case, the thickness of the line represents the
time elapsed since the occurrence of the initial blockage.
In tracing out these growth paths, we have ignored the
possibility that traffic feeding into an obstructed link may
itself be reduced below the normal level if vehicles are held
up in another part of the jam. We refer to this as traffic

Fig. 6. Congestion lattice with £, = 3 units and £z = 1 unit (Type I1 jam). A
total of 16 time units have elapsed since the eriginal obstruction.

‘starvation’. Later, using a computer simulation model, we
shall see that starvation can change the shape of the jam
boundary considerably.

3. Controlling jams

We now assess the effects of changing some of the net-
work parameters on jam growth. The first step is to develop
simplified expressions for jam growth rates for the asymp-
totic case, where the diameter of the jam is large in compar-
ison with the city-block size. This is the topic of the next
section. Subsequently, we consider the effects of different
queueing space configurations on {a) the rate of expansion
of the jam boundary and (b) the propensity to develop
gridlock.

It is not difficult 1o show that, when considered over a
large area of network, the boundary of cur idealized traffic
jam has asymptotically a polygonal shape. We refer first to
Fig. 3, which shows the paths along which queues propagate
for a Type I jam. For any point in the network, one can find a
quickest growth path from the initial obstruction to that
point which involves, at most, four turns. For points distant
from the initial obstruction, the time required for the queue
to negotiate these lurns becomes a negligibly small propor-
tion of the total, and the overall time required for a queue to
reach that point will be asymptotically equal to the sum of
the E-W and N-S distances of the point from the obstruc-
tion, measured in blocks, multiplied by the ‘ahead’ link
propagation time.

It follows that the boundary has a diamond shape centred
on the initial obstruction, with the two diagonals asympto-
tically equal in length and parallel to the two sets of road
links, as shown in the upper diagram of Fig. 7.

For Type 1I jams, we refer to the diagram shown in Fig. 4.
For each point on the network, one can find a quickest queune
propagation path consisting of an equal number of consecu-
tive left and right turning movements coupled with a straight
line segment, together with two additional turns, at most.
Asymptotically, the boundary is octagonal, as shown in the
middle diagram of Fig. 7, It is not a regular octagon,
although it has four axes of symmetry. The octagon
approaches the shape of a square as the ratio «/¢ approaches
infinity, as shown in the lower diagram of Fig, 7.

The Type III jam, a degenerate case, represents the bor-
derline between Types T and T1.

3.1. Minimizing jam growth rate

We can now vary the network parameters to see the effect
on the rate of traffic jam growth. The parameters inciude the
proportion of link area that 1s devoted to segregated storage
space (o), and the allocation of stopline widths between
ahead and turning traffic («).

We shall consider Type I jams first. The initial queue
propagates upstream from link to link in the opposite
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Fig, 7. Altemative configurations of jam boundaries after a long period.

direction to the ahead flow, and the tail of this queue defines
one comer of the boundary. After an elapsed time 7, the
number of links covered by this queue will be /1 4.

The diagonal of the square will be twice this distance, and
the area (denoted by A) of the traffic jam at time 7 will be
given by

A=27%4 (5)

blocks. Clearly, in order to minimize the rate of growth of
the traffic jam, we need to maximize the value of the ahead
link propagation time.

In Appendix A, we show that this link propagation time is
given by the expression

N o{a—¢)+l_£]

ta =
AT gll-ol 8 N
which, when substituted into Eq. (5), gives

g
(N —gT)?

where
2. NO'(CE - ¢)

J=2/(14T) withT N =gl

and (¢ < o =< o.

The quantity J is a constant, which we refer to as the ‘jam
area coefficient’. The larger the coefficient, the faster the
jam grows.

Now, under appropriate conditions, « could lie anywhere
within the closed interval (0,1). By considering all the pos-
sible combinations of o values that could occur together
with the other parameters, one can show that the lowest
possible value that I' could assume is — 1,

The smallest possible value of J for Type I jams. and
hence the smallest rate of jam growth, occurs precisely
when I' = 0. This is because o << ¢ and T' never assumes
a value less than — 1. This condition will be met if either

(a) @ — ¢, i.e. a “balanced’ layout in which the widths
allocated to the segregated approach queues are in
exactly the same ratio as the demands, or

(b o =0, i.e. the arca and hence the length of road link
over which the queues are segregated is equal to zero.

A similar analysis can be carrier out for Type I jams. It
yields a more complicated expression for the jam area coef-
ficient, but over the range of conditions likely to be met in
practice, the jam growth rate is again minimized (or nearly
50}, when I' = 0. The two configurations (a) and (b) are
alternative ways of achieving the same thing: they both
avoid wasted space in the ‘ahead’ and ‘turning’ areas that
cannot be filled because of queue interference between
arriving vehicles. Consequently, they delay spillback to
the upstrearn junction.

This conclusion applies to any road link in any network,
not just the idealized models described here.

S0, it seems to be desirable to aim in practice for

* abalanced layout insofar as it can be achieved, together
with

# the minimum length of segregated queue storage con-
sistent with the need for lane discipline under normal
operating conditions.

3.2, Inhibiting gridlock

We now turn to the question of gridlock, where the sitna-
tion is quite different. Consider a set of four links that sur-
round a city block, and suppose that an obstruction occurs at
the stopline on one of these four links. A queue will form
and eventually propagate to the other three links in turn, so
that the tail of the queue eventually arrives back at the
starting point of the jam.

Once this has occurred, the jam may be much more diffi-
cult to clear than would otherwise be the case. Let us refer to
the ttme required as the ‘gridlock time’. Initially, the
obstruction may affect only the wming traffic on the link
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under consideration, or the ahead fraffic, or both simulta-
neously. We will assume that it affects the turning traffic:
the other cases differ only in detail and the overall conclu-
sions are the same. The gridlock time, denoted by f,, is
given hy

Ig = 4ILR (6)
However, from Eq. (0) we have

N _[ote—w | _dT

REi-ala-e N

which, when substituted into Eq. (6), gives:
4N —4qT)

Eogll-o)

where G, which we refer to as the ‘gridlock time coef-
ficient’, is a function of the layout parameters, and is
given by

ol
(1-9)

Other things being equal, we would wish to postpone grid-
lock for as long as possible, and hence maximize G. Now,
by definition the proportion of ahead vehicles ¢ satisfics the
condition 0 < ¢ << 1, so that /1 — ¢ > 0. It therefore
follows that G is the greatest when T' is large and negative.
This implies that & << ¢. In other words, proportionately
more stopline width is allocated to the turning traffic, so
that &« — ¢ is strictly less than zero. We must force a Type I
traffic jam, and it will be advantageous to set ¢ = 1; in other
words, to segregate the ahead and turning queues along the
whole length of each link. Qualitatively, it is easy to see that to
postpone gridlock we rescrve as much storage space as possi-
ble for turning vehicles, thus reducing the rate at which
spillback proceeds around the four sides of the block.

Hence, there is a direct conflict between the requirement
to maximize the gridlock time and the requirement to mini-
mize the overall growth rate of the jam.

G=1-

4, The computer simulation model

The above model does not 1ake into account randomness
in the vehicle arrival times, nor the ‘starvation’ phenomenon
mentioned in Section 2.4, To see how these factors might
affect jam structure, we turm to a simulation model. It is
based on the same assumptions about queueing behaviour
as the theoretical model, with traffic fed into the roads at the
edge of the grid (details are given in Appendix A.3).

4.1, Results from the simulation model

Three main series of tests were carried out using the
simulation model. The first was concerned with the rate of
jam growth over time, to test the hypothesis predicted by the
analytical model that it would be desirable to aim for a

‘balanced’ layout, where the widths of the segregated
approach queues are allocated in proportion 1o the demands
(o = ¢). with minimat length of segregated queue storage
(small ¢). The second was concemed with delaying the
onset of gridlock.

4.1.1. Minimizing jam growth rate N

A number of simulation trials were conducted. and for
each run, the size of the traffic jam (measured in terms of the
total number of blocked links) was recorded after 11 cycles.
N was set at 50, the demand was 24 (vehicles/min), the
capacity was 50 (vehicles/min) and the proportion of vehi-
cles travelling in the ahead direction (¢) was 0.8. The
parameters that varied from trial to trial were the stopline
width allocation parameter o and ¢, the parameter which
monitored the proportion of link area devoted to the sepre-
gated queucs. Thus, « and o satisfied the conditions o &
10.33,0.5,0.66,0.75,0.80,0.85) and 0 € {0.4,0.5.0.6,0.7,
0.8}.

Fig. 8 shows the effect of segregated queue storage cap-
city on the jam size for various channelization regimes. The
results indicate that the rate of jam growth decreases pro-
portionately with ¢. In addition, the rate of jam growth is
minimized when o approaches 0.8, Thus, when ¢ = ¢ =
0.8, the jam expansion rate is minimized. These results con-
firm the fact that the jam expansion rate can be curbed if the
stopline widths are allocated in proportion to the demands,
with minimal segregation. -
4.1.2. Inhibiting gridlock

The number of cycles until the onset of gridlock was
recarded for various values of the stopline allocation param-
eter, «. The model parameters were the same as in the pre-
vious experiment, except that the proportion of area devoted
to the segregated queues was fixed at 0.4 throughout.

The results confirm the analytical model prediction that
the onset of gridlock can be delayed by reducing o, 1.e. by
allocating a larger proportion of stopline width to the turn-
ing traffic. Fig. 9 shows the effect for the particular param-
eter values listed above; however, a similar pattern was
observed for other demand levels as well,

4.2. Queue starvation

Fig. 10 shows that, with the simulation model, the bound-
ary is roughly diamond shaped, as expected. However, some
of the links inside the boundary become ‘starved’ of vehi-
cles, and do not accumulate queues at all. Since the density
of vehicles on these links is less than normal traffic, we refer
to them as ‘anti-queues’.

Starvation may affect the jam boundary as well, but this
only becomes apparent for large jams. Fig. 11 shows a
simulated traffic jam about the size of London. The picture
was achieved by running the simulation model overa 256 X
256 one-way grid network with & = 0.5 and ¢ = 0.8,
parameters for a Type 1 jam. Each dot represents a blocked
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Fig. 8. Effect of segregated queus storage on jatn size for varicus channelization regimes.

junction. The anti-queues are not shown. The jam boundary
still exhibits the overall diamond shape, but it is indented
like a four-petalled flower. In fact, this is a fractal and its
structure has been analysed in detail in an earlier paper by
(Abbess and Roberg, 1995).

Starvation has a third effect that is less immediately
obvious than the two already mentioned: because vehicles
are not able to leave the area enclosed by the jam boundary
at the rate they would otherwise have done, outbound flows
are depleted for some distance outside. The ‘halo’ of

14

12 4

Number of cycles till gridiock
[+

reduced traffic flows around the boundary is just perceptible
in some of the computer visualizations.

The jam process can also be viewed as one of diffusion-
limited aggregation (DLA; see Abbess and Roberg, 1995),
because the rate of jam growth at the centre is faster than the
rate at the tips: in other words, the growth pattern is den-
dritic. [The reader is referred to (Witten and Sander, 1981),
for a general treatment of DLA processes and (Batty, 1990)
for a description of their application to the development of
urban structure.}
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4 4

2
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Fig. 9. Effect ot channelization on time till gridlock.
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Fig. 10. Spatial characteristics of a simulated Type ! jam on a 20 % 20 one-
way network.

4.3. Effects of stochastic variation in vehicle arrival rates

At the local level, random fluctuations in traffic flow can
have a marked effect on queue lengths, a fact which the
analytical model does not take inte account. Consequently,
at an ecarly stage the computer simulation model was
adapted to run with Poisson flows feeding into the edge of
the grid. This secemed to have little effect on the overall
shape and size of the traffic jam after the first few cycles,
except that the boundary was slightly less regular in shape.

Fig. 11. A large simubated traffic jam on a 256 x 256 one-way grid network.

Unlike traffic signal queues under light demand conditions,
traffic jams occur as an accumulation of relatively large
numbers of vehicles over a relatively long period of time,
and as the size of the jam increases the mean rate of accu-
mulation increases to a level such that random fluctuations
from one time period to the next are small compared to the
mean, even with Peisson input flows, The results are fiot
sensitive to the precise way in which initial queues form
close to the obstruction.

5. Cenclusions

A simple analytical mode!l, supplemented by a simulation
model, has been used to demonstrate how the rate of growth
of a jam, and its propensity to develop gridlock, vary with
the queue storage arrangements. The model ignores the
etfects of route choice, since the overall pattern of jam
development is governed not so much by the routes of vehi-
cles but by the overall turning proportions at each junction
in the network, Whilst this approach may sacrifice some
realism, some general principles have emerged that may
be applicable to-more realistic conditions.

The key results may be summarized as follows. When an
obstruction is created at a particular point on a grid network
of the type described, a queue forms and subsequently
branches out over a wide area. The theoretical analysis
predicts that the boundary will have either a diamond
shape or octagonal shape in plan. As one might expect,
the rate of jam growth is affected among other things by
the severity of the orginal blockage and the overall
level of traffic demand. Bt is also affected by the propor-
tion of link storage area denoted to the segregated queues
and the balance of storage area between ahead and turning
gueues.

In addition, the allocation of storage areas affects the time
required for gridlock to occur. However, the onset of grig-
lock and the growth rate of the traffic jam as a whole are to
some extent independent. They may be influenced in differ-
ent ways by the various network parameters: strategies that
yield improvements in one respect may not yield a similar
improvement in the other. In particular, there are circum-
stances in which channelization postpones gridlock but can
actually increase the rate of growth of the jam and hence the
overall delay.

‘What is less obvious is that, in addition, vehicle starvation
can alter the jam structure in three ways: firstly by produ-
cing anti-queues, secondly by creating wider variations in
the shape of the jam boundary and thirdly by creating a halo
of reduced traffic flow outside the congested area. The anti-
queues are particularly prominent in Type | jams, and are
always oriented away from the jam centre. They may have a
practical use in clearing jums once they have formed, via a
routeing strategy in which vehicles are diverted at right
angles to their original paths until they clear the jam bound-
ary, and later return to their intended paths.
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The authors have since extended the simulation model to
deal with a two-way grid network and, in more recent work,
have reproduced the model for small networks using
CONTRAM and SATURN. Preliminary results indicate a
similar pattern of jam development despite differences in
the modelling assumptions. Ultimately, we envisage that the
model could be used as a tool for diagnosing and prescribing
treatment for trouble spots in central urban areas (Roberg

and Abbess, 1995).

"~ Further work is needed to resolve some outstanding
issues. First, empirical studies of queue interaction and
cross-blocking would be desirable. Second, these phenom-
ena need to be represented in the model in a more realistic
form, and tests made to establish the sensitivity of the model
results to the assumptions made. However, real jams are
surprisingly difficult to observe, and the real environment
is so complex that local events can mask what is really going
on. All we can say for the moment is that theoretical con-
siderations point to cross-blocking as not being very impor-
tant once a jam has started to form, although it can markedly
affect the gridlock time. Local variations in the interaction
mechanism between ahead and turning queues on each link
are probably more important.

We suspect that, qualitatively at least, the practical impli-
cations of our model results are relevant over quite a wide
range of real life conditions, including traffic jams caused by
permanent bottlenecks in the road network. They are very
simple and (with hindsight) fairly obvious. First, a traffic
Jjam will grow more guickly if vehicles cannot fill up the
potential queue storage space on each link. Accurately
matching the allocation of turning queue lane width and
ahead queue lane width to the corresponding demands
will reduce the likelihood of empty spaces and keep the
jam compact. (Other measures such as the prevention of
cross-blocking are also desirable.) Of course, this is diffi-
cult if the proportion of tuming fraffic varies over time,
but the effect of any imbalance can, in theory, be mini-
mized by making the channelized lanes as short as
possible.

On the other hand, if the first priority is to postpone grid-
lock, lane width should be aliocated preferentially to the
tuming queues, so that they back up less speedily around
the sides of a block.

It seems that one cannot do both, and it is interesting to
consider which of the two strategies might work best. This
problem, together with the broader questions of whether
congestion management measures actually help or hinder
the delivery of a sustainable transport system in the long
run, will be considered in a separate paper.
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Appendix A
Appendix A.1 Queue spillback times

Any road link in the network is divided into three distinct
storage areas. It is useful to derive a basic result that applies
to each of them. Suppose that, owing to congestion down-
stream, the discharge rate from the storage area in question
is reduced to a value equal to a constant ¢ times the demand,
where ¢ << 1, causing a queue to form. Eventually, the quene
will grow until it fills the storage area.

Suppose the storage area is of length L', the maximum
nomber of vehicles that can be stored in it being N'. Let the
journey time of vehicles through the storage area when
vehicles are moving normally under unobstructed con-
ditions be 7", and let the demand (i.e. the input flow at the
upstream end) be g’ vehicles per unit time.

We define the time origin as the moment when discharge
is initially obstructed. There will be ¢'T' vehicles in the area
at this moment. Let the time taken for a queue to develop
and {ill the storage area be t’. Then, the number of vehicles
in the queue at the moment when the storage area fills will
be equal to the number in the area at time zero plus the
number entering during the interval ¢, minus the number
leaving during that interval. It follows that
N=gT +41 —cqt
Rearranging, we get

r Fep?
t = M ( AD i
g'(1—-c)
The value of # represents the time taken for a capacity
restriction to propagate from one end of a queue storage
area to the other.

Appendix A.2 Link propagation times. derivation

Referring to Fig. 2, let N, and Ny respectively be the
maximum number of vehicles that can be stored in the
ahead and rurning segregated areas. Also, let Ny denote
the maximum number of vehicles that can be stored in the
reservoir portion of the link. Then », the maximum
number of vehicles that can be stored on a link, is equal
to Ny + Nigp + Nk

Now, let T, be the journey time of vehicles through an
ahead storage area, when there is no obstruction to the flow,
and let 7y and Tp be the corresponding journey times
through the turning segregated storage area and the
upstream reservoir respectively. Since the ahead storage
area has the same length as the turning storage area, we
assume T4 and Tyy are equal. Also, 7, the journey time of
vehicles along a whole link when there is no obstruction to
flow, is equal to Ty Tror Ty + T

Using Eq. (Al), we can now evaluate each of the two
propagation times f, and ¢y as the sum of the relevant
segregated storage area spillback time and the reservoir
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spitlback time thus:

_ (Na—qaTa)  (Np—qTp)
AT o T q-0
and
o (Mg —aqrrTir) | Ne—qTpR)
BT (-0 q(l — )

Now, since Ny=ooN,Nip={(1—a)oN, Nz=(1 — a)N,
ga=0q, qr=(l—¢)gand T + Te =T g + Te =T, it
follows that

W= o lAi 5 [La; - %] (A2)
and
N ol — o T
=g [ﬁ—g" - ¢)} - %] (A3)
A litile algebra yields
tA—hr= N ol - )
g(l—c) @l —¢)

Note that the above equation relies on the assumption that
the journey time through the turning segregated storage area
and the corresponding time through the ahead storage area
are the same. However, even if they were different, the
effect would only be to add a constant term to the equation.
This does not alter the behaviour of the model fundamentally.

Appendix A.3 The simulation model

The simulation model differs only in detail from the ana-
lytical model, First, the flows are not continuous: time is
divided into a series of equal slices, and for each of the three
queue storage areas within each link (i.e. the upstream reser-
voir, the ahead queue storage area and the turning queueing
storage area), a record is kept of the total inputs and outputs
during each time slice. At the end of each time slice, the
inputs and outputs are compared and the queue sizes are
updated accordingly. A typical model cycle involves all of
the east—west roads being processed in turn, starting with
the link at the downstream end and moving progressively
upstream from link to link. Then, all the north—south roads
are processed. Initially, this cycle is carried out several
times without any obstruction being placed on the network,
to allow the system to stabilize. An obstruction is then
introduced on a link near the centre of the grid, a jam
evolves from the obstruction and the cycle is repeated
until the jam reaches the edge of the grid.

Second,, during each time slice, the outputs from each
storage area are taken as the inputs to the appropriate
storage areas immediately downstream for the next time
slice. The simulation model therefore takes account of the
starvation phenomenon.

Third, the model addresses the movements of individual
vehicles, However, the routes that they follow are not

predetermined, and it does not ‘track’ them through the
system. Suppose that X vehicles are discharged from any
particular reservoir during a given time slice. They are split
into two groups: the number of vehicles aliocated to the
‘ahead’ group is the nearest whole number to ¢X, while
the remainder are allocated to the tuming group. The two
groups are progressed respectively to the downstream ahéad
and turning queues, regardless of origin. Effectively there-
fore, individual vehicles perform a random waltk over the
network, with the probability of moving ahead at any junc-
tion equal to ¢. This represents a simplification in conven-
tional traffic modelling similar to that adapted by Holden
and Risebro (1995) and Wilson (1995). While it may not be
very realistic, it does not directly affect the pattern of queue
development, which is determined by the overall tumning
movements as opposed to the routes followed by individual
vehicles.

Finally, stochastic variation in the level of demand is
atlowed. Generation of vehicles from the sources is Poisson
with mean demand at each access point u. A fixed value of
is used to create an isotropic flow of vehicies through the
system as a whole.

The program is intended to deal with large networks at
high speed, and care has been taken to minimize the data
storage requirements and to streamline the coding. The
development of an area-wide traffic jam can be observed
in much less than real time, allowing a range of parameter
variations to be explored at a reasonable cost in terms of
computer resources. The program can handle a jam extend-
ing over a grid of 19 X 19 blocks (i.e. 760 links and 400
junctions) in about 2 min, with potential for further
expansion.

The existing software includes facilities for manipulating
the time interval between successive updates of the vehicle
queues, the traffic demands and the queue storage arrange-
ments. Although not specifically intended to do so, the
process of switching priority alternately between E-W
and N-S traffic echoes the operation of a co-ordinated sig-
nal system, and in future it might be worthwhile to develop
this aspect to provide a facility for investigating the effects
of varying signal timings on jam behaviour. In addition, the
software can be used to investigate the way in which jams
disperse by removing the blockage and introducing external
counter-measures. The graphical display enables the user to
view the success of intervention over a considerable time
period.
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