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Abstract�We analyze the optimum transmitter power levels and 
the optimum number of active terminals sending data to a 
CDMA base station. The objective is to maximize the aggregate 
throughput of the base station. We find that in the presence of 
additive noise, received power balancing is suboptimal 
mathematically.  We consider N terminals transmitting at the 
same data rate, with the power of the most distant terminal 
(terminal N), fixed at its maximum value, and the power of the 
other N-1 terminals varying.  We conclude that the aggregate 
throughput at the base station is maximized when the receiver 
powers for the N-1 terminals are equal and larger than the 
receiver power of the N-th terminal.   This finding reduces the 
complexity of the analysis to a univariate optimization problem.  
A numerical analysis indicates the extent to which additive noise 
reduces the optimum number of active terminals and the 
maximum base station throughput. 

Keywords-power control; radio resources management; power 
balancing 

I. INTRODUCTION 
 

 We analyze the throughput of a CDMA base station 
receiving data from N transmitters, all operating at the same 
constant bit rate. We consider two resource management 
issues: transmitter power control and the number of terminals 
that should be admitted to the system in order to maximize 
base station throughput.  
 Early work on uplink CDMA power control focused 
on telephone communications and determined that to 
maximize the number of voice communications, all signals 
should arrive at a base station with equal power [1]. Initial 
studies of power control for data communications focused on 
maximizing the utility of each terminal, with utility measured 
as bits delivered per Joule of radiated energy [2,3].  By 
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contrast this paper considers maximizing the aggregate 
throughput of a CDMA base station. 
 In earlier work on this problem, Ulukus and 
Greenstein [9] adjust data rates and transmitter power levels in 
order to maximize network throughput. Lee, Mazumdar, and 
Shroff [10] adapt data rates and power allocation for the 
downlink, and provide a sub-optimal algorithmic solution 
based on pricing. Sung and Wong [11] assume that the 
terminals� data rates are different but fixed, and maximize a 
capacity function.   
 Our recent work [4-7] adjusts the power and rate of 
each terminal to maximize ΣiβiTi, the aggregate weighted 
throughput of a base station. Ti b/s denotes the throughput of 
terminal i and the weight βi admits various interpretations, 
such as priority, utility per bit, or a monetary price paid by the 
terminal. This research assumes that the number of active 
terminals is fixed, their data rates are continuous variables to 
be optimized, and that the system is interference limited (noise 
is negligible).  
 In the present paper, we set all the βi=1 and take the 
data rates to be identical and fixed, but we view the number of 
active terminals as a key variable to be optimized. We also 
consider additive noise to be non-negligible, which is essential 
when out-of-cell interference is significant, and included in the 
noise term. The research reported in [8] dealt specifically with 
the case when noise and out-of-cell interference* are 
negligible, and found that the transmitter power levels should 
be controlled to achieve power balancing. With power 
balancing, all signals arrive at the base station with equal 
power.   
 By contrast, the results in the present paper pertain to 
the case when noise and interference from other cells are not 
negligible. We show that with additive noise power balancing 
leads to sub-optimal performance and that when one terminal 
has a maximum power constraint, the optimum set of 
transmitter power levels depends on the maximum received 
SNR of the constrained terminal. Furthermore, we 
demonstrate that when one terminal has a maximum power 
constraint, the other terminals should aim for the same 
received power, which depends on the maximum SNR of the 
constrained terminal.  

                                                        
*To be concise we refer to the combination of noise and inter-cell interference 
simply as �noise�. The analysis does not distinguish the two impairments. It 
considers only their combined power. 
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 We also find that in order to maximize base station 
throughput with any power control algorithm, the number of 
active transmitters, N, should be limited to N ≤ N*, where N*, 
is a property of the frame success rate f(γ), the probability that 
a terminal�s data packet is received successfully as a function 
of γ, the received signal-to-interference-plus-noise ratio 
(SINR). The specific form of f(γ) depends on the details of the 
CDMA transmission system, including the packet size, 
modem configuration, channel coding, antennas, and radio 
propagation conditions. Our analysis applies to a wide class of 
practical frame success functions, each characterized by a 
smooth S-shaped curve [4].  
 The next section presents the CDMA transmission 
system and a statement of the throughput optimization 
problem. The analysis in Section III considers the effects of 
non-negligible noise and out-of-cell interference.  

II. THE OPTIMIZATION PROBLEM 
A data source generates packets of length L bits at each 
terminal of a CDMA system. A forward error correction 
encoder, if present and a cyclic redundancy check (CRC) 
encoder together expand the packet size to M bits. The data 
rate of the coded packets is Rs b/s. The digital modulator 
spreads the signal to produce Rc chips/s. The CDMA 
processing gain is G=W/Rs, where W Hz, the system 
bandwidth, is proportional to Rc. Terminal i also contains a 
radio modulator and a transmitter radiating Pi watts. The path 
gain from transmitter i to the base station is hi and the signal 
from terminal i arrives at the base station at a received power 
level of Qi=Pihi watts. The base station also receives noise and 
out-of-cell interference with a total power of σ2=Wη0 watts, 
where η0 is the one-sided power spectral density of white 
noise. The base station has N receivers, each containing a 
demodulator, a correlator for despreading the received signal, 
and a cyclic redundancy check decoder. Each receiver also 
contains a channel decoder if the transmitter includes forward 
error correction.  
 In our analysis, the details of the transmission system are 
embodied in a mathematical function f(γ), the probability that 
a packet arrives without errors at the CRC decoder. The 
dependent variable γ, is the received SINR. For terminal i,  
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Acknowledgment messages from the receiver inform the 
transmitter of errors detected at the CRC decoder that have not 
been corrected by the channel decoder. The transmitter 
employs selective-repeat retransmission of packets received in 
error.  
 Our earlier study [8] assumes that intra-cell 
interference dominates the total distortion and study system 
performance when σ2=0. When σ2>0, we define the signal-to-
noise ratio of receiver i as si=Qi/σ2 and rewrite Equation (1) as  
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In cases of practical interest f(γ) is a continuous, increasing S-
shaped function of γ, with f(0)=2-M≈0 and f(∞)=1 [4].  
 If the probability of undetected errors at the CRC 
decoder is negligible, the throughput of signal i, defined as the 
number of information bits per second received without error, 
is: 

)( isi fR
M
LT γ=     b/s,                                          (3) 

The aggregate throughput, Ttotal, is the sum of the N individual 
throughput measures in Equation (3). Assuming that L, M, and 
Rs are system constants, we analyze the normalized throughput 
of N simultaneous transmitters as UN defined as  
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UN is dimensionless and bounded by 0≤ UN≤ N. 
 The aim of our optimization study is to find the 
transmitter power levels, Pi, that maximize UN.. We then 
examine the maximum throughput as a function of N in order 
to find the number of simultaneous transmitters that result in 
the highest normalized throughput. To find the optimum 
transmitter power levels, it is convenient mathematically to 
maximize Equation (4) with respect to the received powers Q1, 
Q2,�,QN. To do so, we differentiate Equation (4) with respect 
to each of the received power levels Qi. We then examine the 
N derivatives under the power balancing condition Qi=Q for 
i=1,2,�,N. Under this condition, all of the derivatives are 
equal. They have the following properties. 
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 These formulas indicate that when performance is 
limited by intra-cell interference (σ2=0), it is possible that 
maximum throughput occurs when all signals arrive at the 
base station at the same power level. The optimization 
problem is more complex when σ2>0.  
 Our prior work [8] shows that in the absence of 
additive noise, UN is maximized when all signals have the 
same SINR γ=G/(N-1) ≈γ*, where γ*, the preferred SINR, is a 
property of the frame success function f(γ). Therefore, with 
σ2=0, the optimum number of active terminals is an integer 
near 1+G/γ*. 

III. MAXIMUM THROUGHPUT WITH NOISE PRESENT 
 In this paper we take into account the effects of 
additive noise and interference from other cells. The total 
power in these impairments is σ2=Wη0 watts (and we refer to 
them together as �noise� to be concise). The noise appears at 
the receiver as an additional signal that does not contribute to 
the overall throughput. The system has to use some of its 
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power and bandwidth resources to overcome the effects of the 
noise.  
 The effects of noise depend on the power limits of 
practical terminals. With unlimited power, we would increase 
all the received powers Qi indefinitely until the effect of the 
noise is negligible. To account for the power limits, let Pi,max 
denote the power of the strongest possible signal transmitted 
by terminal i  and Qi,max=Pi,maxhi, the power of the 
corresponding received signal. The maximum signal-to-noise 
ratio of terminal i is si,max=Qi,max/σ2.   In our analysis, we order 
the labels of the terminals such that Q1,max≥Q2,max≥�≥QN,,max. 
In many situations this ordering implies that terminal 1 is 
closest to the base station and terminal N is most distant. 

A. Two terminals 
 With Q2,max≤Q1,max, it is reasonable to assume that 
when terminal 2 is admitted to the system, it transmits with 
maximum power to achieve Q2=Q2,max.  In this case, Equation 
(4) becomes 
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If we introduce the normalized quantity z=s1/s2,max and for 
conciseness we set ρ=1/s2,max, then we can rewrite equation (6) 
as 
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The first-order condition for optimality can be expressed as  
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Using the substitutions  
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we obtain the first-order condition for optimality:  
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Equation (5) implies that with 02 >σ , power balancing is 
suboptimal and that there are transmitter powers with z>1 that 
produce higher throughput than the throughput obtained when 
z=1. 

To establish a necessary condition for a maximum we 

need to evaluate the sign of 2
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∂ at the critical point. In 
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If we evaluate equation (11) using the first-order condition in 
(10), we obtain an expression (12), whose sign determines the 
nature of the turning point.   For a maximum, we require that 
this expression is negative, i.e. 
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Because f�(γ) >0 for all γ, a sufficient condition for a 
maximum is that both 

a) 0)('' 1 <γf and 0)('' 2 <γf     
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For the class of functions considered here, there is a quantity 
γ~  for which 0)('' <γf when γγ ~> .  Therefore if γγ ~

2 > and if 
z>1, it follows that 0)('' 1 <γf  as required. 
 For the numerical examples in this paper, we refer to 
the frame success rate function for the non-coherent frequency 
shift keying modem and the frame size M=80 considered in 
previous work on power control for wireless data [2-7]. In this 
case, 802/ )5.01()( γγ −−= ef . 

Figure 1 is a numerical example with ρ=1 and 
G=16.2, the processing gain that produces U2=1 at z=1. The 
figure shows throughput as a function of z, and graphs for the 
two sides of Equation (10). It shows that the �power-balanced� 
solution, z=1, is sub-optimal and that equation (10) has 
solutions at z=1.41 and z=0.65. Throughput is maximum 
when z=1.41 and a minimum when z=0.65. Note that if 
terminal 1 transmits at a power greater than 1.41P2,max, then 
the total throughput will still be better than having just one 
terminal transmit; however, it is no longer optimal. 

 

 
Figure 1: The aggregate throughput U2 is maximum at power 
ratio z=1.41  
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B. Arbitrary Number of Terminals 
 
 We now move the analysis beyond the case of two 
terminals.  We would like to determine the optimum receive-
power vector when there are N terminals, where the power of 
the weakest terminal (N) is fixed.  We begin with a brief 
analysis for N=3 and find that the optimum solution depends 
on a single variable, which greatly simplifies the problem.  We 
then extend the results to the more general case.   
 
B.1 N=3 Terminals 
 
 As with N=2, we assume that the transmitter power 
of the weakest terminal is fixed at P3=P3,max, so that s3=s3,max 
andwe introduce   the normalized quantities zi=si/s3,max, and 
ρ=1/s3,max. The throughput equation can then be expressed as  
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We first evaluate the partial derivatives for terminals 1 and 2 
and obtain 
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For a critical point we require that both partial derivatives 
equal zero, from which we obtain the first-order condition 
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Condition (15) can be met if 2121

~ zz =→== γγγ which 
implies that a solution exists if the receive power of the two 
�non-fixed� terminals is equal, yet not necessarily the same as 
the receive power of the fixed terminal. This solution may not 
be unique.  However, it is useful both for mathematical 
analysis and for practical implementation.   
 
B.2  Extension to N terminals 
 

The throughput equation for N terminals transmitting 
to the base station, assuming that zi=si/sN,max, for i=1,�,N-1, 
and zN=sN/sN,,max =1, can be expressed as 
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As with the previous analysis we begin by writing N-1 the 
first-order conditions that need to be satisfied simultaneously:  
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This system of equations can be reduced to N-2 equations of 
the form 

( )
( ) 2,..,1

)('
)('

1111
−==

+
+

++++
Ni

z
z

Gf
Gf

i

i

iii

iii

γγγ
γγγ

 (18) 

 
Condition (18) can be met if γγγ ~

1 == +ii  for i=1,�,N-2,. It 
follows that zi=zi+1 for i=1,�,N-2 from which we conclude 
that a solution to the first-order conditions is zi=z=s/sN,max for 
i=1,�,N-1.  This greatly simplifies our problem since the 
optimal solution now depends on one power ratio z, rather 
than N power levels.  We can therefore reduce the throughput 
equation given in equation (16) as follows.   
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Then, the throughput equation can be expressed as 
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Using the same approach as before, we can differentiate with 
respect to z and obtain  
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which for a critical point yields the first-order condition: 
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If 1=z , the first order condition cannot be satisfied.  Hence, as 
with N=2, we conclude that for a turning point, 1>z . To 
classify this point we need to evaluate the sign of the second 
derivative:   













 −−−

+















−+=

∂

∂

Nz
NN

G
NNf

NfN
f

Nf
f

G
N

z
NU

γ
γγγ

γ
γ

γ
γ

γ

)2()1(
2

3)('2

)('')1(
2)('

)2('
)(''

2

4

2

2

    (22) 

Since 0)(',, 224 >NN fG γγ  it follows that the sign of 
equation (22) is the same as the sign of 
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Note that when N=2, expressions (23) and (12) are identical.  
A sufficient set of conditions for a maximum is 
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b) 0<+ BA , 
c) CBA >+  (24)   

One way to satisfy condition (24b) is if both 0<A  and 0<B .     
For the class of functions considered here, f��(γi)<0 
when .~γγ >i  If we assume that both γγ ~>N and z>1 then it 
follows that both 0)('',0)('' << γγ ff N  as required. 
 This analysis so far suggests that a local maximum of 
UN with respect to z1, z2, �, zN-1 occurs at some value of z such 
that z=zi>zN. However, we need to ascertain whether the 
maximum is at z=∞. A maximum at z=∞ suggests that it 
might be better to exclude terminal N.  The answer depends on 
ρ.  Since we have established that )1( >zU N is a maximum, 
we can say that a sufficient condition for an interior solution is 

)1()( NN UU <∞ , which implies that 









+−

<







−
−

ρ12
)1(

N
GNf

N
GfN  (25) 

 
It follows that the largest value of N which satisfies equation 
(25), say N*, is the maximum number of active terminals 
which ensure an interior solution.  If N>N*, the aggregate 
throughput may still be maximized (z>1), however, the power 
of the �non-fixed� terminals will approach infinity. 
 

  
Figure 2: Throughput difference as a function of number of 
terminals (N). The values of N for which the difference is 
negative have maximum throughput at z<∞. 
 
 Figure 2 shows a numerical example for G=128.  The 

vertical axis is [ ]
11 =∞=

∞ −=
zNzNN UUU . The condition for 

an interior point (25) is [ ] 01 <∞
NU . The graphs indicate the 

values of N that have an interior solution (1<z*<∞).  For 
example, when sN=0.5 (ρ=2), N≤10 satisfies condition (25) 

and the maximum throughput occurs at z<∞.  The largest 
value, N*=10 is the maximum number of active terminals 
which will ensure an interior solution.  Using condition (21) 
we can numerically calculate z as z=2.24 which is indeed an 
interior solution.  For N>N*, condition (25) is no longer met 
and the maximum approaches z=∞.  This suggests that in a 
practical setting, it would advisable to admit no more than N* 
terminals (let Pi=0, for i>N*).   
  It is interesting to note that as sN→∞, the value of N* 
approaches 13, which is the optimal number of terminals 
(G=128) when there is no noise: As shown in [8], maximizing 
the number of active terminals is equivalent to optimizing the 
function f(γ)/γ which is maximum at γ*=10.75.  Thus,  

*/1* γGN +≅ =12.9. 

CONCLUSIONS 
 

This research considers how to maximize the throughput of a 
CDMA base station receiving data from N transmitters, all 
operating at the same constant bit rate. The principal 
conclusions are that the aggregate throughput at the base 
station is maximized if N-1 transmitters aim for a target SINR 
that is greater than the maximum SINR of the weakest 
terminal.  Further, the number of active terminals should not 
exceed N*, where N* is the maximum number of terminals 
that can simultaneously transmit whilst ensuring an interior 
solution of the first and second order optimality conditions. 
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