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Abstract The developmeni of area-wide traffic Jams over an idealised
network can be analysed as a spatial phenomenon. The traffic quenes
branch out to form a structure with regular geometric features, su-
perimposed on the network of streets through which the vehicles are
attempting to pass. The structure of the developed traffic jam appears
to have featnres in common with those of fractal objects.

This paper draws on research on the subject of “Controlling Area-wide
Traffic Congestion” being conducted at Middlesex University. The need
for an overall conceptual approach has led to the consideration of the
suitability of fractal models for describing the form of the traffic jam
image. In particular, we have extensively examined the similarities
and differences between the vehicle simulation model and the DLA
{Diffusion Limited Aggregation) Model.

By extending the network size by five binary crders of magnitude, (ie
16..512), we have been able to assess the Hausdorff dimension of the im-
age using automatic box counting methods. Cur resnlts have enabled
logarithmic plots to be drawn, with up to nine points represented, each
showing approximately linear form. The Hausdorff dimension is esti-
mated to be about 1.7.

Our resnlts have highlighted the fact that an increase in the network size
suggests an increase in the Hausdorff dimension, whose numerical value
may be dependent on the outline of the final image. The dimension of
interior regions of the image appears to be about 1.9,

1 Introduction

The development of area-wide traffic jams over an idealised network can be
analyzed as a spatial phenomenon. The traffic queues branch out to form a
structure possessing near-regular geometric features, superimposed on the
network of streets through which the vehicles are attempting to pass. The
structure of the traffic jam appears to have features in common with fractal
objects. _

The objectives of the research project inciude deepening the under-
standing of the formation of traffic jams as well as coniroliing their disper-
sal. Earlier research [1] has shown that the growth of a traffic jam can be
seen as a branching process which resembles a fractal-like structure. This
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and the need for an overall conceptual approach has led to the consider-
ation of the suitability of fractal-based growih models for describing the
form of the traffic-jam unage.

2 A mathematical model for traffic-jam growth

A traffic jam involves a process of aggregation. A vehicle will travel from
an origin towards a particular destination. If an obstruction is encoun-
tered, the vehicle will be forced to wait until it can proceed. During this
time more vehicles will arrive in the road system, some will have avoided
the obstructed area and others may not. Queues will begin to form with
one vehicle waiting behind another and, depending on the severity of the
obstruction, a structure of aggregating vehicles will begin to emerge. This
accumuiative nature of a traffic jam has enabled us to select a modified
version of the mathematical model {2] called DLA over other fractal mod-
els.

2.1 Principles of DLA

DLA is a process which generates a single cluster of particles over a network
of sites. The network is often referred to as a lattice, this being a regular
arrangement of points which fills a space. The model’s name suggests a
pattern whereby simple particles cling to a self-evolving structure. The
sticking is determined by a set of rules. Thus the aggregation of particles
can be described as a diffusive process governed by specific laws which limat
the development of the cluster over the lattice.

In order to apply the principles of DLA to this piece of research, it has
been necessary to relax a number of the assumptions associated with the
pure DLA model [3]. The description of the general DLA process refers to
this modified version. The modified DLA process described in this section
acts as a starting point for the representation of traffic on a network. A
detailed DLA-type traffic model is presented in the next section.

2.2 The modified DLA mechanism

A circular, bounded region is first selected. The region encloses a regular
square lattice. The radius of the bounded region is fixed according to
the size of the lattice. A seed particle is fixed somewhere near the centre
of the lattice. Before initiating the process it is necessary to select the
amount of time required for the growth of a particular cluster. The time
element can be viewed as a threshold which, once reached, will force the
growth process to terminate. This limit i1s then divided into sequentially
numbered time-shces of equal length. During each tune-slice new particles
are launched from the perimeter of the bounded region. The number of
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particles included in a launch follows a Poisson arrival process with a fixed
parameter 4. When a launch occurs, the particles begin random walks on
the lattice.

Particle Stales

During each step of a particle’s random walk, the particle can assume one
of the three following states:

¢ Fixed Particle, which ceases to move with respect to time,
¢ Transient Particle, which continues to move with time,

e Destroyed Particle, which is lost to the system.

Particle Movements

A particle can move one square at a time in any of four directions. Fach
move involves three possible outcomes, as follows

. A particle moves outside the circular bounded region, whereupon it
is destroyed.

¢ A particle approaches the exisiing cluster. If the particle is within
neighbourhood {one-step) of a fized particle, the moving particle gains
a fized state and, as a result, its walk is terminated and the cluster is
extended.

¢ A particle advances towards a transient (non-fixed) particle. If the
particle is within the neighbourhood of a transient particle, the move-
ment of the particle will be suspended temporarily and resumed in a
subsequent time-shice.

During a time-slice the status of particles occupying sites on the lattice
may be be either fixed, destroyed or transient.

Whenever a particle is engaged in a move, the state of the particle is
either maintained or updated.

As the particles are dealt with in sequential fashion, the problem of
achieving a continuous pattern of movement has been encountered. The
effects of this problem have been minimised by selecting relatively short
time slices, resulting in a smooth, approximately continuous process.
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2.3 DLA-key features

The essential features of the DLA growth process can be summarised thus.

e Lattice of sites,

Seed particle (with fixed status) planted at the centre of the lattice.

Growth process of a cluster of particles emanating from the seed.

Particles released from the edge of a pre-defined region adhere to the
law of conservation of particles.

The tesultant image comprises a graphical structure constructed from
all fixed particles on the lattice. The image is a connected graph.

3 The traffic simulation model

The evolution of traffic queues over a road network can be viewed as a
composite system governed by many interactions. An ideal model is used
to focus attention on the features of congestion growth that are not ge-
ographically dependent, The simulation model has been developed using
the PASCAL programming language for IBM 386 PC-compatible micro-
computers.

3.1 The environment

The simple DLA environment has been replaced by a series of one-way
streets intersecting at right angles. The system of streets forms a grid-
like structure typical of town centres, New York’s busy Manhattan being a
particular example. A sequence of alternating sources and sinks has been
constructed at the edges of the square grid rather than employing a circular
bounded region, described in the analytic model. An obstruction is placed
near the centre of the network.

Arrival of vehicles at the sources is determined by a Poisson model,
reflecting the demand for access to the network of roads. The expected
mean of the demand at each access point is described by u, the model’s
parameter. A fixed value for u is used to help create an isotropic flow * of
vehicles through the system as a whole.

Contrary to the DLA model described in the previous section, the move-
ment of vehicles within a road network is not a random walk. This means
that the rules governing vehicular motion appear to be a little more com-
plicated.

13se Section 4.
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Figure 1. A DLA type traffic jam

The mechanism of vehicle movement, known as the release mechanism,
mimics simple traffic control. Vehicles are partially segregated into traf-
fic lanes, and the release mechanism aliows vehicles to progress subject to
vehicle space downstream, capacity constraints at junctions and interac-
tions between queueing vehicles. Vehicles can either maintain their ahead
direction or turn in preacribed directions. The propensity of a vehicle to
turn is controiled by a fixed probability value which is the same for each
ntersection. The proportion of vehicles turning is determined at the time
of release and is fixed subject to simple numerical rounding.

It is important to note that a stream of random arrivals is introduced to
the road network via a gtochastic process which only operates at the entry
points. The release mechanism works deterministically on the quantity of
vehicles that have gained access to the System, and the stochastic behaviour
of the model occurs solely at the network’s access points.

Instead of considering the movement of individual vehicles within the
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network, vehicles are assembled into queues, throughout the system, whose
states are continually being reviewed.

3.2 Possible states

In keeping with DLA, the three fundamental ‘state’ categories remain un-
changed. However, instead of considering the state of the individual vehicle,
we have defined the state of the traffic queues according to the links of the
network on which they are located. A link is that portion of a one-way
street, between junctions, which contains queues of vehicles characterised
by their turn status and queueing discipline (either segregated or mixed
queue). In keeping with DLA, links can be fized, fransient or destroyed,
The destroyed category can be represented by the links situated at the
exit points of the network. These links will be referred to as sinks due to
the fact that they absorb vehicles leaving the system. Transient links are
those links which, as the simulation progresses, allow temporary storage
and movement of vehicles, and may include the source links whereby vehi-
cles are introduced to the network. A fized link is one where the capacity
to accommodate new vehicles is zero and consequently all vehicles in the
link are fixed. Our terminology for the fized state is tlocked link, and
the teaffic jam is conceived as the aggregation of blocked Iinks which form
a connected graph. (The simulation preserves yellow bozes at junctions
which are unavailable for waiting traffic, and hence blocked links are topo-
logically connected.) Because the graph is connected, the vehicles in the
blocked link are permanently stationary and conform to the fized status
described in the analytical model.

3.3 Vehicular movement

Vehicle queues can only progress in two possible directions, these being
ahead or turning, as described above. Each move can lead to one of three
possible outcomes, as follows

o Vehicles can be assigned to one of the sinks, in which case they are
lost to the system at the end of the time-slice.

o Vehicles can be assigned to a link with a fransieni state and its
queues will be updated, reflecting the movement of vehicles away
downstream. Although temporarily at rest, the vehicles would nor-
mally be moved on during the next time-slice, though some vehicles
may be retained for more than one cycle of the simulation.

o During the assignment process the dJownstream link may become full.
This means that there is no available space for the temporary place-
ment of extra queueing vehicles. Under these circumstances, the hnk
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acquires the blocked status, and further movement of vehicles is not
allowed. As a result, existing vehicles cannot move out of the link
and, in addition, future vehicles will not gain access into the link.

The blocked link will increase the extent of the traffic jam, and will be
permanent, due to the connected nature of the graph and permanence
of the obstruction.

The movement of vehicles, via the release procedure for links, is imple-
mented in two phases. All the east-west movementa are processed in the
first phase, whilst the north-south movements are realised in the second
phase. This encourages a slight asymmetry in transient streets due to the
relative position of the image in relation to the simulation time slice. This
asymmetry is reflected in slightly larger queues on the east-west road sys-
tem in comparison with the north-scuilt counterpart. This can be seen in
Figure 1. To ensure a regular growth pitiest, the model assumes that a
steady state flow is in operation befoze the traffic-jam growth procedure
is initiated. A description of the implementation of the steady state flow
follows in the next section.

3.4 Simulation model—key features

The egsential features of the traffic quenes simulation model can be sum-
marised thus.

» Rectangular Grid of road-links and nodes.

s Obstruction (with fixed state) planted at centre of the network.

Self-Evolving growth process surrounding the core of the obstruction.

All vehicles released from the edge of the grid are accounted for.

The resultant image comprises a graphical structure constructed from
all fixed streets on the network. The image constitutes a connected
graph.

4 An isotropic network

‘The vehicle simulation model described above differs in one major respect
from the DLA model in a way not previously discussed. The DLA growth
Process starts with an empty system, whilst the vehicle simulation envisages
a steady, isotropic flow of vehicles, moving in and out of the system. Growth
of the traffic jam is initiated simply by the installation of an obstruction.
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4.1 Isotropy—implementation

The isotropic state of the road network has been defined in terms of the
system’s inputs and corresponding outputs. By introducing a RUNUP
period (in which no obstruction is present on the network), 1t 1s possible
to extract some knowledge about the system’s approach to stability. The
gradual approach of the network to its steady state is depicted in Figure 2.
- We have chosen to record the total input to the road network at the
beginning of each time-slice and likewise to calculate the total output at the
end of each time-slice. The differences between these two parameters form
a sequence which can be tested for stationarity using time-series methods.
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Figure 2. Network’s approach to isotropy

Location and Application of Steady-Stale

If the RUNUP phase involves n time-slices,where n needs to be determined,
we can denote the first time-slice by 7 = 7, and the last time-shce by 7 = r,.
The corresponding sequence of numbers, which represent the differences
between the system's input and output, are similarly denoted by ¥y ... yn-
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The sequence ¥1...Yn is partitioned into k samples, each of size v.
The length of ¥ is chosen empirically, not too long to allow exclusion of
initial flows, but not too short to be over-sensitive to local stationarities
and turning points. Each sample is considered separately as a time series
and is tested for trend and absence of turning points.

If a particular sample { y; | 7 = (k— 1)y + 1,..., kv } satisfies the
conditions for stationarity, then the system has achieved its isotrapic state.
Hence n = kv.

Once n has been determined, an obstruction is then introduced near
the centre of the grid, a jam evolves from the obstruction and the cycle is
repeated until the jam reaches the edge of the grid.

5 A box-counting algorithm-—description

The box-counting algorithm [4] has been adapted to assess the Haussdorf
dimension of the traffic-jam image. The method of adaptation can be
summarised as follows.

o A computer simulation is used to generate a traffic jam image over a
network comprising M? interconnecting nodes, arranged in the form
of an M x M grid, where M = 2. ( The nodes are connected by
streets and in effect act as junctions.) The components of the traffic
jam imnage are precisely those streets which have assumed a blocked
status.

e A square grid of side L is drawn to enclose the traffic-jam image. The
grid is superimposed upon the road network 5o as to aveid coincidence
(Figure 3a), of the road-network structure with the super-umposed
grid. The translation of the grid by a constant {Figure 3b), has
eliminated the possible ambiguities which could arise in the counting
procedure.

o The square grid comprises 2°* square boxes of unit area. (In other
words, k = logy L.) The grid can be partitioned into 2°(*~%) gquare
boxes of side 2f, where i =0...k.

The grid is then partitioned in a number of ways, this procedure being
referred to as a divisions process. Initially there will be L boxes of
side 1, followed by (£,/2)? boxes of side 2 in the second stage, up
until the final stage when there will be a single box of side L. At this
point, the divisions process terminates.

e At each stage in the partitioning procedure, the number of boxes
of side r = 2!, denoted by N(r), that intersect the components of
the traffic-jam image is recorded. A plot of In(N(r)) vs In(l/r) is
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Figure 3. Grid definitions

ther obtained. Providing the resultant graph can be described as
approximately linear with gradient D, then D can be interpreted as
the fractal dimension [5] of the proposed image, since

In(N(r)) = D+1a(1/r) + In(P),

where P is constant, whence

N(r]*rD = P.

6 Calculating fractal dimension

‘The algorithm presented in the previous section can in principle be applied
to networks of any size. However, large networks entail a large amount
of computer time, and so far we have limited the size of the networks to
512 x 512 nodes. This, in practice, is very large compared with real road
networks. The experiments have been conducted on a Digital Alpha AXP
3000 workstation.

6i.1 Shape of traffic jam

‘The formation process of the traffic-jam structure has been discussed in J
detail, but little reference has been made to its shape. We have identified
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Traffic Jam Aggregate : 256 x 256

Figure 4. A petalled shaped jam

a pattern of growth which applies to all the sizes of networks considered.
‘The pattern involves four dominant interlocking queues emanating from
the source of obstruction. The four primary queues branch out into sec-
ondary queues which themselves extend in a self-similar, recursive manner.
The resultant cluster displays a characteristic diamond shaped envelope as
shown in Figure 1. As the network size increases, the diamond shape resem-
bles a four petalled flower, (See Figure 4), but still exhibits four distinctive
tips. The simulation can be suspended as soon as the tips of the traffic jam
extend, but do not intersect the edge of the road-network boundary.

Alternatively, the simulation can be resumed allowing the structure to
develop further, until the characteristic diamond or fower has been replaced
by a traffic jam which spans the entire square network, to form a dlocked,
square network. Assuming that there is no boundary effect, the resultant
image can be viewed as the interior section of a larger, four-petalled shaped
traffic jam.
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Figure 5. Logarithmic plots: negative slope of line equals fractal dimension

6.2 The experiment

The experiment aims to calculate the Hausdorff dimension of a traffic-jam
structure. We have selected two images for consideration, the character-
istic diamond as well as the blocked square network, both of which were
described in Section 6.1.

First, an n x n square network is chosen. Once the road network has
achieved its steady state, an obstruction is installed at a position which is
fixed according to the network size. Denoting this position by the ordered
pair w = (z,y), such that {z,y) € 1... %, we have ensured that the ratio
z : y remains constant for all the networks considered. The essential pa-
rameters required for this stage of the experiment have been summarised
in Table 1.

Secondly, the simulation program is executed to produce the required
traffic-jam image. The fractal dimension of the image is deduced by ap-
plying the techniques described in Section 5. Our results exhibit a strong
linear relationship between the log of the divider step and the log of the
number of intersections, as shown in Figure 5.
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Table 1. Parameter Values used for Generating Traffic Jam

Network Size: n | Steady State: 7, | Obstacle Position: w
16 55 (5,8)

32 135 (11,16}

84 300 {22,32)

128 710 (45,64)

256 1650 (90,128)

512 2700 (180,258)

Table 2. Hausdorffl Dimension of Traffic Jam

Network Size: n | Fractal Dimension: D,
16 1.37 = 0.01

32 1.48 £ 0.03

64 1.52 £ 0.01

128 1.556 £ 0.01

256 1.61 £ 0.00

512 1.63 £ 0.00

6.3 The results

The fractal dimensions, denoted by D,, for the diamond shaped traffic-
Jam images are displayed in Table 2, These results are somewhat similar
to those obtained by Meakin [6], for a conventional DLA process.

‘The fractal dimension of the structure that spans the square network
has been estimated at 1.90 + 0.02, Yn € 16...512. This measure will be
referred to as D, the subscript having been omitted because the measure
applies to all sizes of network considered. I3 effectively represents the
fractal dimension of an interior section of the traffic jam.

7 Geometric interpretation of fractal dimension

The interior fractal dimension I can be explained by considering two sim-
ilar but not identical situations. In the first, every single link on the road
network is blocked, resulting in a totally blocked grid. The second situa-
tlon, 18 simply the dlocked, square neiwork described in Section 6.1. The
two images differ in one respect only. The second situation entails a system
of anti-quenes? ( a series of empty links which complement the traffic jam
image), whereas the first does not. By calculating and comparing the Mass
Dimension [7] of these two images, one can assess the extent to which the

?See Section 7.1
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presence of anfi-queues affects the interior dimension of a traffic jam. The
Mass Dimension 1s denoted by M.

7.1 Anti-queues and holes

As seen in Figure 1, a traffic jam is not represented by a totally blocked
network. Instead, a feature of a traffic jam is the starvation effect which is
caused by the formation of the jam itself. Vehicles that, under unobstructed
conditions, could access certain links, are barred entry due to the fact that
these links have become surrounded by blocked links. This phenomencn
leads to unoccupied areas that are propagated from one link to another in
much the same way as queues.

One can view the fress links as arti-gueues that link together to form an
anti-jam that is complementary to the jam itself. Besides the aniti-queues
which evolve with the jam, close observation of the graphical images of traf-
fic jams has highlighted the fact that the structure of the jam is not entirely
regular. The irregularities manifest themselves as holes which appear un-
predictably in the structure. The holes are embedded within the traffic jam
structure, and close investigation has revealed partially filled links, which
are completely surrounded by totally blocked links. This phenomenon has
been noticed in internal regions of the jam, which are at quite a distance
from the jam boundary. Although they are few in number, it appears that
the holes form as a result of the growth of the traffic jam itself.

7.2 Calculation of My

The square grid road network of side length L is selected. For the sitna-
tion in which no anti-queue is present, the road network comprises 2L(L+1)
blocked links, whilst in the second situation the image comprises 2L(1+ L /2)
blocked links. The Mass dimension in both cases can conveniently be de-
duced as My = 2, the value of the exponent in the limiting form of the two
eXpressions.

This means that the numerical value for My is not affected by the
presence of anti-queues in the traffic jam image. The application of the
Boz-Count Algorithm to the traffic jam image which includes both anti-
queues and spans the entire square network has yielded a dimension of
1.90 + 0.02. Assuming there is no boundary effect, D < 2 = My implies
that the structure of the traffic jam includes additional empty space besides
the anti-gueues which form part of the traffic jam 1mage.

In addition, the fact that D = 1.90 £ 0.02 < 2 for any size of square
network suggests that the amount of empty space enclosed in a square
traffic jam structure scales according to the size of the square network.
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7.3 Analysis of D,

Dy, can, in theory, assume values in the range 1 < D, < 2. As D, — 1, one
would deduce that the image approximates a linear structure whereas, if
. Dp -~ 2, one could iafer that the image approximates a square-like struc-
ture. In other words [, measures the degree to which the traffic jam
inage fills a two-dimensional space. The crude graphical images of the
larger networks suggest that an increase in the network size tends to pro-
duce structures which resemble flowers with four distinctly curved petals,
whereas the clusters grown on small networks display a characteristic dia-
mond shape. The refinement of the shape of the traffic jam may be reflected
in the apparently increasing values obtained for D,, a higher D, imply-
ing a mozre space-filling trafficjam structure. In Figure 1 the boundary of
the traffic jam can be viewed as approximately step-like, and to a degree,
almost linear whereas with Figure 4 the curvy boundary is reflected in a
fractal dimension closer to 2 than 1. .

8 Conclusions and further work

The research has established that traffic-jam images display fractal char-
acteristics. The images form self-similar structures, in that the growth
pattern of traffic queues is replicated across several scales. In addition, the
Hausdorff Dimension of the images under consideration does not exceed the
Euclidean dimension, indicating that the images represent fractal forms.

A fractal object often involves an underlying growth process, and we
have identified aspects of similacity between the DLA growth process and
the traffic;jam aggregation mechanism. However, we have highlighted ma-
Jor differences between the formal specification of DLA and the vehicle
simulation, such as the movement of traffic queues inside the region of con-
sideration, and the necessity to operate a steady flow of vehicles before the
aggregatlon process can commence,

Exploratory assessments of the Hausdorffl Dimension have led to the
discovery of irregularities in the form of the traffic-jam image, but more
research into the distribution and extent of the hoies in the traffic jam
structure is required. We envisage developing more representative pictures,
particularly for larger networks, which would enable us to assess the pos-
sible fractal nature of the holes incorporated in the image. In addition, we
would like to consider the density of the jam at various radii of gyration,
which would enable us to understand whether holes are likely to appear at
particular locations in the structure.

Our research has highlighted the fact that the shape of a traffic jam
becomes more intricate as the size of the growth environment increases and
has suggested that this refinement of shape may contribute to the reasoning
behind the apparently increasing values of D,. More research is required



266 C.R. Abbess and P. Roberg

to determine the implications for the nature of D, and we hope to proceed
by increasing our field of investigation to include still larger networka. This
woulid enable us to establish the extent to which D, appears to approach
an upper bound, and if possible ascertain this limit.

We would like to direct the modelling work towards the self-controlling
nature of fractal-like traffic jams. By identifying factors in the growth
environment which contribute to the development of the traffic-jam cluster,
it may be possible to inhibit the onset of gridlock. This time-oriented gain
would enable added flexibility to the successful implementation of Traffic
Control Strategies, which we hope to analyse by developing the Traffic
Simulation Model.
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