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Abstract - We consider N terminals transmitting at the 
same data rate (G), with the power limits on the N 
terminals being Pmax. We assume that the power of the 
most distant terminal (terminal N) is fixed at its 
maximum value, Pmax and arbitrary noise power is σ2.  
The path gains of the N terminals are given by hi, 
corresponding to the locations of the terminals.  The 
objective is to maximize the aggregate throughput at 
the base station, in terms of (a) the optimum number 
of terminals admitted to the system and which ones 
and (b) the power levels of each admitted terminal.   
We also describe the maximum throughput as a 
function of data rate and noise power level. 
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I. INTRODUCTION 
 
 Early work on uplink CDMA power control 
focused on telephone communications and determined 
that to maximize the number of voice communications, 
all signals should arrive at a base station with equal power 
[1]. Initial studies of power control for data 
communications focused on maximizing the utility of 
each terminal, with utility measured as bits delivered per 
Joule of radiated energy [2,3].  By contrast this paper 
considers maximizing the aggregate throughput of a 
CDMA base station. 

                                                
1 Supported in part by NYSTAR through the Wireless Internet Center for 
Advanced Technology (WICAT) at Polytechnic University and by the National 
Science Foundation under Grant No. 0219822 
 
 

 A different approach to this problem, is described 
by Ulukus and Greenstein [4] who adjust data rates and 
transmitter power levels in order to maximize network 
throughput. Lee, Mazumdar, and Shroff [5] adapt data 
rates and power allocation for the downlink, and provide 
a sub-optimal algorithmic solution based on pricing. Sung 
and Wong [6] assume that the terminals� data rates are 
different but fixed, and maximize a capacity function.   
 A related strand of recent work [7-10] adjusts the 
power and rate of each terminal to maximize ΣiβiTi, the 
aggregate weighted throughput of a base station. Ti b/s 
denotes the throughput of terminal i and the weight βi 
admits various interpretations, such as priority, utility per 
bit, or a monetary price paid by the terminal. This 
research assumes that the number of active terminals is 
fixed, their data rates are continuous variables to be 
optimized, and that the system is interference limited 
(noise is negligible).  
 In this paper, we set all the βi=1 and take the data 
rates to be identical and fixed, but we view the number of 
active terminals and their associated power levels as key 
variables to be optimized. We also consider additive noise 
to be non-negligible, which is essential when out-of-cell 
interference is significant, and included in the noise term.  
 Our recent work reported in [11] dealt 
specifically with the case when noise and out-of-cell 
interference* are negligible, and found that the transmitter 
power levels should be controlled to achieve power 
balancing. With power balancing, all signals arrive at the 
base station with equal power.   
 By contrast, in [12], we find that with additive 
noise (a) power balancing leads to sub-optimal 
performance and (b) that when one terminal has a 
maximum power constraint, the other terminals should 
aim for the same received power, which depends on the 
maximum SNR of the constrained terminal.  
 Here, we briefly review the main result from [12] 
and then extend the analysis to find the number of active 

                                                
*To be concise we refer to the combination of noise and inter-cell interference 
simply as �noise�. The analysis does not distinguish the two impairments. It 
considers only their combined power. 
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transmitters, N.  We show that in order to maximize base 
station throughput with any power control algorithm, that 
N should be limited to N ≤ N*, where N*, is a function of 
background noise and the frame success rate f(γ), the 
probability that a terminal�s data packet is received 
successfully as a function of γ, the received signal-to-
interference-plus-noise ratio (SINR). 
 The specific form of f(γ) depends on the details of 
the CDMA transmission system, including the packet 
size, modem configuration, channel coding, antennas, and 
radio propagation conditions. Our analysis applies to a 
wide class of practical frame success functions, each 
characterized by a smooth S-shaped curve [4].    
 The outline of the paper is as follows.  We first 
present the details of the CDMA transmission system and 
a brief statement of the throughput optimization problem. 
We then examine the effects of non-negligible noise and 
out-of-cell interference on both the optimal number of 
transmitters and the receive-power ratio which jointly 
maximize base-station throughput. We also show how 
noise reduces the number of active terminals and illustrate 
our results with a numerical example. The implications 
for admission control are then briefly discussed. 

II. THE OPTIMIZATION PROBLEM 
 
A data source generates packets of length L bits at each 
terminal of a CDMA system. A forward error correction 
encoder, if present, and a cyclic redundancy check (CRC) 
encoder together expand the packet size to M bits. The 
data rate of the coded packets is Rs b/s. The digital 
modulator spreads the signal at a rate of Rc chips/s. The 
CDMA processing gain is G=W/Rs, where W Hz, the 
system bandwidth, is proportional to Rc. Terminal i also 
contains a radio modulator and a transmitter radiating Pi 
watts. The path gain from transmitter i to the base station 
is hi and the signal from terminal i arrives at the base 
station at a received power level of Qi=Pihi watts. The 
base station also receives noise and out-of-cell 
interference with a total power of σ2=Wη0 watts, where η0 
is the one-sided power spectral density of white noise. 
The base station has N receivers, each containing a 
demodulator, a correlator for despreading the received 
signal, and a cyclic redundancy check decoder. Each 
receiver also contains a channel decoder if the transmitter 
includes forward error correction.  
 
In our analysis, the details of the transmission system are 
embodied in a mathematical function f(γ), the probability 
that a packet arrives without errors at the CRC decoder. 
The dependent variable γ, is the received SINR. For 
terminal i,  
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 Acknowledgment messages from the receiver 
inform the transmitter of errors detected at the CRC 
decoder that have not been corrected by the channel 
decoder. The transmitter employs selective-repeat 
retransmission of packets received in error.  
 Our earlier study [11] assumes that intra-cell 
interference dominates the total distortion and examines 
system performance when σ2=0. When σ2>0, we denote 
the signal-to-noise ratio of receiver i as si=Qi/σ2 and 
rewrite Equation (1) as  
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In cases of practical interest f(γ) is a continuous, 
increasing S-shaped function of γ, with f(0)=2-M≈0 and 
f(∞)=1 [3].  
 If the probability of undetected errors at the CRC 
decoder is negligible, the throughput of signal i, defined 
as the number of information bits per second received 
without error, is: 
 

)( isi fR
M
LT γ=  b/s,                                      (3) 

 
The aggregate throughput, Ttotal, is the sum of the N 
individual throughput measures in Equation (3). 
Assuming that L, M, and Rs are system constants, we 
analyze the normalized throughput of N simultaneous 
transmitters as UN defined as  
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UN is dimensionless and bounded by 0≤ UN≤ N. 
 

III. FIRST-ORDER NECESSARY CONDITIONS 
 
As stated earlier, this paper deals with the effects of 
additive noise and interference from other cells. The total 
power in these impairments is σ2=Wη0 watts (and we 
refer to them together as �noise� to be concise). The noise 
appears at the receiver as an additional signal that does 
not contribute to the overall throughput. The system has 
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to use some of its power and bandwidth resources to 
overcome the effects of the noise.  
 The effects of noise depend on the power limits 
of practical terminals. With unlimited power, we would 
increase all the received powers Qi indefinitely until the 
effect of the noise is negligible. To account for the power 
limits, let Pi,max denote the power of the strongest possible 
signal transmitted by terminal i  and Qi,max=Pi,maxhi, the 
power of the corresponding received signal. The 
maximum signal-to-noise ratio of terminal i is 

si,max=Qi,max/σ2.   In our analysis, we order the labels of the 
terminals such that Q1,max≥Q2,max≥�≥QN,max. In many 
situations this ordering implies that terminal 1 is closest 
to the base station and terminal N is most distant. 
 We would like to determine the optimum receive-
power vector when there are N terminals, where the 
receive power of the weakest terminal (N) is fixed.   
 
A.1 Generalized case: N terminals 

 
The throughput equation for N terminals 

transmitting to the base station, assuming that zi=si/sN,max, 
for i=1,�,N-1, zN=sN/sN,,max =1,  and ρ=1/sN,max, can be 
expressed as 
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We begin by writing the N-1 first-order conditions that 
need to be satisfied simultaneously:  
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This system of equations can be reduced to N-2 equations 
of the form 
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By applying a similar analysis to case of N=3, see [12,13] 
for details, we can reduce this expression further and 
obtain 
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A solution to equation (4) coincides with γγγ ~

1 == +ii  for 
i=1,�,N-2, from which it follows that zi=zi+1 for 

i=1,�,N-2. We demonstrate the uniqueness of this 
solution in [13]. 
  We conclude that a solution to the first-order 
conditions is zi=z=s/sN,max for i=1,�,N-1.  This greatly 
simplifies our problem since the optimal solution now 
depends on one power ratio z, rather than N power levels.  
We can therefore reduce the throughput equation given in 
equation (1) as follows.   
 
For each si=s, (i=1,�,N-1), we write 
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Then, the throughput equation can be expressed as 
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Using the same approach as before, we can differentiate 
with respect to z and obtain  
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Now equation (6) can be simplified if we perform the 
following algebraic manipulations.  Let 
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We can further reduce condition (8) as 
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Substituting (9) into condition (6) results in 
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which yields the following critical points at 0=
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z
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a) G=∞, or 
b) 0=Nγ  or 
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 We can classify each of these critical points by 
examining the second-order conditions, [13].  In this 
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paper, we summarize the key results as follows: (1) with 
no noise, (ρ=0), throughput is maximized when all signals 
are received with equal power (γ=γN) providing N<N*.  
Otherwise some terminals should use P=0; (2) with 
additive noise (ρ>0), equation (11c) is not satisfied with 
γ=γN and  throughput is maximized when (a) one terminal 
has a maximum power constraint (Pmax), and (b) the other 
N-1 terminals aim for the same received power, which 
depends on the maximum SNR of the constrained 
terminal.   
 We would like to determine N*, the optimum 
number of terminals which can be simultaneously 
supported when there is additive noise and both (a) and 
(b) are satisfied. 

We begin by defining the largest value of N 
which satisfies equation (5), say N*, as the maximum 
number of active terminals which ensure that (a) the 
throughput is maximized and (b) that the power vector be 
an interior solution. By this we mean that 0≠Nγ , since it 
is possible to find N>N*, such that the aggregate 
throughput is maximized (γ>γN), however, the power of 
the �non-fixed� terminals will approach infinity. 
 
A.2 Optimal Number of Active Transmitters N* 
 
If we optimize with respect to N, we obtain  
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For a critical point, we need to set equation (12) to zero.  
We can then substitute the expression obtained in (6), to 
obtain  
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We can reduce equation (13) by writing 
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All that remains is to simplify equation (13) using (14) 
which results in 
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 One can therefore solve equation (15) to find the 
optimal number of active transmitters.  This is equivalent 
to maximizing with respect to N.  Further, it can be seen 
that as G→∞ (equivalently, condition 11a), that 
maximizing UN with respect to N is equivalent to 
maximizing f(γ)/γ . For the class of functions f being 
considered, f(x)/x has a unique maximum at the point 
where a line from the origin is tangent to f(x), [4]. We use 
the notation γ* for the signal-to-interference ratio that 
maximizes f(x)/x. γ* is the unique solution to the equation 
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 Further, we demonstrated how maximizing f(γ)/γ 
was equivalent to maximizing the number of users 
without noise (ρ=0, γ=γN).  For the class of function being 
considered, the unique solution was given by γ*=10.75, 
and the corresponding optimal number of transmitters 
was found to be N*=G/γ*+1, [11].   
 One can view this result as a special case of 
equation (15).  In other words, unbounded G is equivalent 
to treating noise and out-of-cell interference negligible. 
Thus, G=∞ is the same as having ρ=0 and γ=γN (z=1).  
This is intuitive, since unlimited bandwidth allows as 
many users as possible to transmit.  However, in practical 
systems, bandwidth is a finite resource and (1) the impact 
of noise is non-negligible and (2) the effect on the number 
of transmitters needs to be ascertained.      

IV. NUMERICAL RESULTS 
 
 So far, we have provided a theoretical framework 
to explain the effects of noise, both in terms of the 
optimal number of transmitters as well as the 
corresponding optimum receive-power vector.  In this 
section, we illustrate the analysis with numerical 
examples and then discuss the implications for admission 
control.  Throughout, we will assume a fixed value for 
QN,max and use this to ascertain z, the ratio of γ to γN. 
 Figure I shows a graphical plot of the left side 
equation (15) for different values of G. One can observe 
the �no-noise� case as ρ=0, γ=γN, (alternatively G=∞). 
This is the upper bound on the system and corresponds to 
the first-order condition given by (11a). Figure I also 
displays f�(γ) as a function of γ. The intersection of this 
curve with one of the other curves in Figure I occurs at 
γ=γ∗, the optimum signal-to-interference-plus-noise ratio. 
 For example, when G=16, γ*=12.11, and 
similarly when G=40, γ*=11.354 and when G=128, 
γ*=10.94. Note that the critical value of γ* approaches 
10.75 as the system bandwidth increases. 
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 We can find N* using the unique value of γ 
obtained from the solution to equation (15).  We shall 
refer to this value as γ*, the critical SNR for the N*-1 
terminals.  But, by definition, γ* must satisfy 
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It follows that upon dividing through by z (1<z≤∞) and 
substituting equation (9) we can obtain an expression for 
N* as 
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Note that when ρ=0 and γ=γN expression (17) reduces to  

1
*

* +=
γ
GN  which was found to be the optimum number 

of terminals for the �no noise� case, [11].  This condition 
can be viewed as the upper bound on the system. 
 It follows that condition (17) is a more general 
form and can be used to ascertain the optimum number of 
active transmitters (N*) which can be admitted given the 
level of background noise and γ* which is determined via 
equation (15).   
 

 
Figure I: Effect of bandwidth on γ*: Finite values of G 
increase γ* beyond γ*=10.75, the optimal γ* for the �no-
noise� case (equivalently G=∞).  
 

Next, we examine the relationship between the 
sub-optimal solution (γ=γN )and the optimal solution 
found in [12], which occurs when γ>γN. In the next 
example, we show that the sub-optimal solution is a good 
approximation and that the gains obtained by setting γ>γN 

do not appear to be significant.  We demonstrate this 
using the numerical example in Figure II. 

With ρ=1, N*=12, and the throughput, UN, is 
maximum at γ/γN= z=1.176>1.  However, one can 
observe that γ=γN  (z=1) is a close approximation. There 
may be situations (depending on ρ) where this difference 
might be more significant, however in this example one 
can see that UN is nearly the same for γ=γ*=γN as it is for 
γ>γN.   
 Further, since ρ=1, the maximum number of 
transmitters is one less than the case without noise and if 
N>12, there is no solution except at z=∞.  The graph also 
shows that if N<N*, then throughput can be maximized at 
γ=γN or z=1.  
 Based on this observation, we then plot equation 
(15) and observe N*, the optimal number of transmitters 
as shown in Figure III. If we evaluate equation (17) at 
γ=γN we obtain a bound on N*: Thus 
 

ρ
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 Assuming that the sub-optimal solution γ=γN is a 
good approximation, it follows that equation (18) relates 
the optimal number of terminals N* to the background 
noise level.  It can be observed that noise acts as ρ 
interfering terminals.  An example is shown in Figure III. 

 
Figure II: With G=128 and ρ=1, we find that UN is largest 
when N*=12 and maximized for γ/γN=z=1.176.  At γ=γN 
(z=1), UN is close to optimal.  Other optimal power ratio 
allocations are possible for N<N*.   
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Figure III: The effect of noise on throughput and the 
optimum number of admitted terminals: when ρ=0 (no 
noise), N*=13. Further increases in ρ reduce the optimal 
number of active terminals, N*. 
 
 Our results can be used as part of a simple 
admission control scheme.  Given ρN, the noise-to-signal 
ratio of the �weakest� terminal, where ρN>ρN-1>�>ρ1, 
and the data rate G, we can determine N*, the optimum 
number of active terminals and their power levels such 
that the aggregate throughput at the base-station is 
maximized.  
 We first apply equation (18) with the pair (N, ρN) 
to find the optimal number of terminals which can be 
admitted under the near-optimum power-balancing 
assumption (γ=γN).  We then calculate the corresponding 
throughput given by equation (15).  We then eliminate the 
�weakest� terminal and apply the algorithm in a recursive 
manner.  When the algorithm terminates, we will have a 
vector of values for N* and a corresponding vector for 
UN*.  
 The objective is to find a value of N* as close as 

possible to 1
*

+
γ
G , the upper bound on the system, which 

also maximizes UN*. Under certain physical assumptions, 
this algorithm will help decide how many terminals to 
admit from the population and which ones. This analysis 
is described in detail in [13].  
 

CONCLUSIONS 

 
In this paper, we examined the effects of non-negligible 
noise and out-of-cell interference on both the optimal 
number of transmitters and the receive-power ratio which 
jointly maximize base-station throughput. We showed 

that with noise � throughput is not mathematically 
maximized using power-balancing; however, for practical 
purposes, power-balancing is nearly optimum.   
 Further, we tie two strands of research together: 
the �no-noise� case described in [11] and the equivalent 
system where �noise� is explicitly considered.  We show 
that the former is a special case of the latter and can be 
viewed as an upper bound on the system.  We also 
quantify how �noise� reduces the optimal number of 
active terminals.  
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