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Abstract - It is now generally accepted that modern network 
traffic (for example, Ethernet, VBR and Web) is ‘self-similar’ in 
nature, i.e., the statistical characteristics of the traffic stream 
remains largely unchanged when examined at several different 
scales.  One appropriate model for self-similar traffic is 
Fractional Brownian Motion (FBM).   
 
The main contribution of this paper is to formulate and verify a 
set of general rules that can be applied to calculate the FBM 
parameters of an aggregate traffic profile consisting of multiple 
input streams, each with its own characteristic burstiness 
profile.   
 
The parameters of the aggregated FBM traffic can then be used 
to calculate the effective bandwidth of an aggregate traffic 
pattern formed by multiplexing a mixture of heterogeneous 
traffic streams.    
 

I. INTRODUCTION 
 
Statistical analysis of high-resolution traffic measurements 
from a wide range of working packet networks (e.g. Ethernet 
LANs [1], compressed video streams [2], wide area TCP/IP 
traffic [3] and World Wide Web (WWW) traffic loads [4] 
have convincingly shown the presence of fractal or self-
similar properties in both local area and wide area traffic 
traces.  This means that similar statistical patterns may occur 
over different time scales that can vary by many orders of 
magnitude (i.e. ranging from milliseconds to minutes and 
even hours).  The fact that network traffic is inherently fractal 
or long-range dependent (LRD) poses a problem for many 
teletraffic related traffic engineering problems, e.g. traffic 
measurements and performance, buffer sizing, admission 
control and congestion control.  While most of the work done 
in science and engineering has almost exclusively focused on 
the practical features of fractal models (e.g. data analysis and 
mathematical modeling), their engineering impacts on 
performance and analysis is not well understood.  This is 
mainly because of the difficulties related to analysis and the 
ability to use these models in control.   
 
One such model is the bandwidth allocation formula, which is 
based on Fractional Brownian Motion (FBM), [5].  It is 

attractive because it relates the fractal characteristics of the 
traffic stream with quality of service (loss) and the physical 
network constraints.  The model can be used for planning.  
However, While the model can be used to guarantee 
bandwidth for different types of fractal traffic (Web, Video, 
etc.), it can only be used on a per class basis.  Traffic in 
modern packet networks is often aggregated from multiple 
traffic types and the resultant stream is typically a 
heterogeneous mix.  In designing SLAs, network planners are 
interested in determining the bandwidth required to guarantee 
service for traffic aggregated from a number of distinct traffic 
classes.    

II. OVERVIEW OF SELF-SIMILAR TRAFFIC 
 
The mathematics of self-similarity is described in detail in 
[6].  We plan to employ two statistical tests to measure the 
degree of self-similarity of the aggregate traffic stream.  
These are (a) the variance-time plot and (b) the R/S Statistic.  
For a rigorous definition, see [2,6]. 
 
A.   Mathematics 
 
Let ,....)2,1,0:( == ttXX  be a stochastic process with constant 
mean ][ tXE=µ and finite variance 2][2 µσ −= tXE . For each 
m=1,2,3,…., let kmXmX )(()( = : k=0,1,.. ) denote the time 
series obtained by averaging the original time series X over 
non-overlapping blocks of size m.  That is, each m=1,2,3,…, 
X(m), is given by ),1(1)(

kmXmkmX
m

m
kX +++−= L   )1( ≥k . 

 
The “variance-time” plot is based upon the fact that for self-
similar processes, the variances of the aggregated processes 
X(m)  decrease linearly (for large m ) in log-log plots against 
m with 2)( )( σβ−≈ mXVar m , where .10 << β  The “variance-
time plot” is a graphical method for distinguishing between 
SRD (β=1) and LRD (0<β<1) for a given empirical record.  
To estimate β, which is related to H by H=1-β/2, we plot 

)))(log(var( mX  against log(m), yielding β as the limiting slope 
as m→∞.  
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Another graphical method is called the R/S analysis method.  
It is based on the rescaled adjusted range statistics (R/S), see 
[2] for a formal definition.  For a self-similar process, a plot 
of the R/S statistic versus the sample size results in a slope of  
( 0.5 < H <1). 
 
An example of a self-similar process with self-similarity 
parameter H is Fractional Gaussian Noise (FGN) with 
parameter ½ < H < 1 introduced by [7].  Associated with 
FGN is Fractional Brownian Motion (FBM), which is the 
integrated version of FGN (that is, an FBM process is simply 
the sum of FGN increments).  Later, we will use a technique 
described by [8], to generate synthetic traces of FGN.   
 
B.    Effective Bandwidth 
 
When traffic is composed of flows from many independent 
sources, then, providing each source is heavy-tailed, the 
resulting aggregation is self-similar [9].  The author in [10] 
provides a mathematical characterization of the effective 
bandwidth r, required by a self-similar traffic source, as 
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where, m is the mean traffic arrival rate of the traffic stream 
(say, in bps), a is the ‘variance coefficient’ of the traffic 
stream (say in bit-sec), H is the Hurst parameter in the range 

15.0 ≤≤ H , b is the buffer size (in bits) and , ε  is the target 
loss rate for the traffic stream. The variance coefficient a, is 
calculated as the variance to mean ratio of the traffic stream. 
We refer to (m,a,H) as the three parameters which  
characterize an FBM traffic source. Note that the two 
parameters a and H characterize the “quality” of the traffic, 
whereas the long run mean rate m, characterizes the 
“quantity”.     

Two assumptions in the theoretical derivation of the formula 
should be observed.  First, the formula depends on the traffic 
being sufficiently Gaussian, which is more likely when traffic 
is aggregated from a large number of sources.  Second, the 
derivation of the formula uses the Weibull distribution to 
approximate the tail of the queue length distribution.  This 
approximation is logarithmically accurate for large buffers, so 
a sufficiently large buffer must be available for the theory to 
apply.   
 
The applicability of the Norros formulae in practice has been 
demonstrated through simulation, [11].  Furthermore, the 
authors justify the large buffer and Gaussian assumptions. 
 

III.  RULES FOR COMBINING NON-HOMOGENEOUS TRAFFIC 
STREAMS 

 
The aim of this paper is to formulate a set of general rules 
that can be applied to calculate the FBM parameters of an 
aggregate traffic profile consisting of multiple input streams, 
each with its own characteristic burstiness profile.   
 
A.    Background  
 
Consider finding a reasonable FBM approximation to an 
arbitrarily given stochastic process (.)A  with stationary 
increments (so that )()( sAtA −  might occur as a model for the 
amount of traffic arriving in the interval  (s,t]  of time).   
 
Assume that (.)A  is defined such that E[A(t)]=mt for all  m in 
(-∞,+∞), m∈ℜ, (where, m  is the mean arrival rate for  A), 
and there is a function V(t)=var[A(t)]which is defined and 
finite for all t. Since we are dealing with a model of traffic 
arrivals, we restrict our attention to cases where m>0. 
 
In general, (.)V is not particularly elementary, but one can 
hope to approximate it with a relatively simple formula, such 
as that of an FBM with Hurst parameter H and variance 
parameter v  (=a*m,  m>0) expressed as  

H
fbm vtvHtV 2),;( =           

The true arrival process A is well approximated by an FBM 
with parameters  (H,v,m) if (a) the arrival process A is 
Gaussian, and (b) (.)V and ),,(; vHV fbm are sufficiently close.  
Since the main question here is the choice of parameters, the 
discussion here can ignore (a), so that attention can be 
concentrated on (b). 

Next, consider an aggregate stream (.)(.) ∑=

s

sAgA  which is 

formed from the superposition of independent arrival 
processes (.)sA , where each (.)sA  is assumed to be well 
approximated by an FBM with parameters ms ,Hs and vs.  
 
Naturally, the mean rate mg, of the aggregate stream Ag is just 
the sum of the mean rates  ms of the individual streams.  But 
we need to find values for Hg and vg for which 

),;( vHtV fbm ≈ )(tVg .  Since we assume that the individual 
streams are well approximated by FBMs, we can write  

),;()(var())(var()( svsHt

s

fbmVt

s

sAtgAtgV ∑∑ ≅==  

On this basis, our aim is to find values Hg and vg so that 

∑≅

s

svsHtfbmVgvgHtfbmV ),;(),;( . 
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Now the FBM formulas are straight lines in log-log 
coordinates, so we can consider functions of the type 

),;(log(),;( vHeVvHW fbmfbm
ττ = , which is a straight-line 

graph, since,  
 

)log(2)log(),;(log(
2

vHvevHeV
H

fbm +== τττ            
 
where,  the independent variable τ is the log of the time scale 
at which fluctuations are observed, and the dependent 
variable  Wfbm is the log of the variance).  Correspondingly, 
on the same graph, one would be trying to approximate the 
curve  
 

)(0)2log()(log()( ττττ gWHe

s

svegVgW s =≅= ∑           

 
For the homogeneous case (where Hs=H ∀ Hs), )(τgW  

reduces to a linear expression of the form ∑+

s

svH )log(2 τ  

which is just ),;( ∑==

s

svgvHgHfbmW τ . 

 
In general, however, the Hs are not all the same, in which 
case  Wg  is not linear. Assuming that 0gW  is a good 
representation of gW , we can state that 0gW  is a convex 
function with a slope rising to )max(2 sH as +∞→τ .  From 
this perspective, our aim is to find parameter values, gH  and 

gv for which the straight line ),(.; ggfbm vHW is close to the 
curve (.)0gW   
 
To do this, we consider two approaches.  First, motivated by 
the desire to match the LONG-RANGE dependence as 
accurately as possible, one could choose 

∞= HHg and ∞= vvg  with  

)max( sHH =∞  and }|{ ∞==∞ ∑ HsH

s

svv ,   

so that the line ),(.; ∞∞ vHW fbm would be the asymptote of  

0gW  as +∞→τ  (i.e. at large time scales).   This will be 
referred to as Method A. 
 
A second approach is to fix an arbitrary logarithmic time 
scale ix , and find )( ig xHH = and )( ig xvv = so that the line 

))(),((.; iifbm xvxHW  is tangent to (.)0gW  at ix=τ .  This 

constraint yields a different set of conditions 
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Notice that, as one might expect, )( ixH is an average of the  
(with weights is xHesv 2 ). In particular, ∞< HxH i )( .  For the 
special case of the distinguished logarithmic time scale being 

0=ix , corresponding to a physical time scale of  1=ixe  time 
unit, the expressions simplify to being 
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These will be referred to as Method B. The approximations 
for vg and Hg for both Method A and Method B (assuming 
unit time scale) are summarized in TABLE I.  Note also that 
ag =vg/mg. 
 

TABLE I 
VARIANCE/ HURST APPROXIMATIONS FOR AGGREGATE STREAM 

 Variance Hurst 
A )|( maxHHvv ssg == ∑  maxHHg =  

B 
 ∑= sg vv  ∑ Σ

=
s

ss
g v

Hv
H  

 
B. Numerical Examples 
 
We used the Fast Fourier Transform (FFT) method described 
in detail in [8] to generate approximately self-similar traffic 
traces.  Each represented a single source of traffic, for 
example Web, Video, Ftp and Email.  Each number in the 
trace corresponded to the number of bytes allocated to bins of 
fixed size duration (1 sec).  The results of the analysis are 
summarized in TABLE II.   
 
For the analysis, we produced two traffic traces, each of 
which was characterized by separate FBM parameters.  These 
could represent the characteristics of two traffic classes, for 
example Web and Email.  The traces were then combined and 
the FBM parameters of the aggregated trace were estimated 
using the methods described in Section IIA.  In total, six 
parameter sets were investigated, labeled (A-F).  Each 
simulation case (A-F) was replicated with 20 traces.  Thus, 
the reported entries correspond to the mean over all traces 
along with the standard deviation.   
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Case A is the homogeneous case and the simulation results 
track the analytic predictions as expected.  For cases (B-F), 
the simulation results for variance-to-mean ratio of the 
aggregated stream are close to Method B.  By contrast, the 
Hurst parameter estimate falls in between the values 
predicted by the analytic methods A and B. TABLE III 
compares the relative error between the simulation and 
analytic for the different methods for both the variance and 
the Hurst parameter predictions.  It illustrates the point that 
while Method B provides a tighter estimate for the variance 
parameter, for the Hurst parameter, both methods produce 
estimates with reasonably sufficient accuracy.  
 

We then applied the bandwidth allocation formula (1), 
assuming SLA Loss = 0.001 and buffer size varying from 
0.5Mb to 10 Mb.  The mean, variance and Hurst parameters 
were obtained from TABLE I.  
 
Fig. I portrays the computed effective bandwidth using the 
parameters from the different methods.  It confirms that for 
case C, Method B is preferred.  This trend was noticed for the 
other cases too, but the degree of discrepancy between the 
simulation results and Method B was sometimes more 
noticeable.  We were not able to quantify this discrepancy 
within the limited scope of these examples, but expect to 
explore this phenomenon in future numerical experiments.   

 
TABLE II 

APPROXIMATION OF FBM PARAMETERS: ANALYTIC VS SIMULATION 
 

 Input 1 Input 2 Analytic A Analytic B Simulation  
 

A 0.20, 0.56, 0.85 0.33, 0.48, 0.85 0.53, 0.51, 0.85 0.53, 0.51, 0.85 0.53, 0.51 ± 0.0133, 0.85 ± 0.02 
B 0.33, 0.68, 0.65 0.33, 0.48, 0.85 0.66, 0.24, 0.85 0.66, 0.58, 0.73 0.66, 0.58 ± 0.0016, 0.80 ± 0.01 
C 0.33, 0.48,0.85 0.20, 1.20, 0.80 0.53, 0.30, 0.85 0.53, 0.75, 0.82 0.53, 0.76 ± 0.0099, 0.83 ± 0.02 
D 0.20, 0.56, 0.85 0.33, 0.68, 0.65 0.53, 0.34, 0.85 0.53, 0.63, 0.72  0.53, 0.64 ± 0.0021, 0.80 ± 0.02 
E 0.20, 0.56, 0.85 0.20, 1.20, 0.80 0.40, 0.56, 0.85 0.40, 0.88, 0.82 0.40, 0.88 ± 0.0143, 0.82 ± 0.02 
F 0.20, 1.20, 0.80 0.33, 0.68, 0.65 0.53, 0.73, 0.80 0.53, 0.88, 0.73 0.53, 0.88 ± 0.0023, 0.77 ± 0.01 

 
TABLE III 
RELATIVE ERROR FOR EACH METHOD 
 

 Var(A) Var(B) H(A) H(B) 
 

A 0.0208± 0.016 0.0208± 0.016 0.0242± 0.015 0.0242± 0.015 
B 1.417± 0.0065 0.0021±0.002 0.0551± 0.016 0.096± 0.0182 
C 1.525± 0.033 0.0113± 0.075 0.026± 0.0178 0.0202± 0.0139 
D 0.871± 0.0061 0.0025± 0.002 0.064± 0.0263 0.1100± 0.0312 
E 0.5761± 0.025 0.0139±0.008 0.041± 0.0265 0.0257± 0.0136 
F 0.205± 0.0032 0.0022± 0.002 0.0910± 0.011 0.0620± 0.0129 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. I: EFFECTIVE BANDWIDTH COMPUTED USING DIFFERENT APPROXIMATIONS FOR FBM PARAMETERS
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IV. CONCLUSIONS 

 
The FBM approximation for an aggregated stream with 
parameters (mg,ag,Hg) was computed using two methods, 
Method A and Method B.  In general, while Method A and 
Method B could be used to track the estimated Hurst 
parameter, Hg, for the variance, Method A was found to be 
inadequate.  The bandwidth allocation for the aggregated 
traffic stream was also computed using the different 
techniques.  In some cases, Method B was found to be more 
appropriate in calculating the effective bandwidth but there 
were exceptions, highlighting the need for further analysis.   
 
The scope for this work was limited to SLA Planning.  We 
expect that the rules derived in this study could be used to 
design buffer and bandwidth requirements for aggregate 
traffic formed from the superposition of individual self-
similar streams.   
 

V. FUTURE WORK 
 

While the analysis has been limited to two sources, in 
principle the methodology can be applied to any number of 
sources, or groups of sources (classes).  The next step would 
be to conduct the numerical experiments with an increased 
numbers of inputs.  This would illustrate the effectiveness of 
FBM to model the superposition of in-homogenous inputs, 
and test the limitations of the assumptions. 
 
In addition, we would like to use simulation to observe the 
loss experienced when multiplexing heterogeneous sources 
through a single buffer.  This would provide a more reliable 
estimate for the effective bandwidth. 
 
Ultimately, it is envisaged that the methodologies described 
in this paper will be incorporated into a tool for SLA 
planning of self-similar traffic in modern high-speed 
networks.  
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