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Abstract

A well-known formula of Tutte and Berge expresses the size of a maximum
matching in a graph G in terms of what is usually called the deficiency. A
subset X of V (G) for which this deficiency is attained is called a Tutte set of
G. While much is known about maximum matchings, less is known about the
structure of Tutte sets. We explored the structural aspects of Tutte sets in
another paper. Here we consider the algorithmic complexity of finding Tutte
sets in a graph. We first give two polynomial algorithms for finding a maximal
Tutte set. We then consider the complexity of finding a maximum Tutte set,
and show it is NP-hard for general graphs, as well as for several interesting
restricted classes such as planar graphs. By contrast, we show we can find
maximum Tutte sets in polynomial time for graphs of level 0 or 1, elementary
graphs, and 1-tough graphs.
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1 Introduction

In this paper we consider only simple graphs. Our terminology will be standard.
Good references for any undefined terms are [5] and [9].

Given a graph G, let ω(G) (resp., ω0(G), ωe(G)) denote the number of components
(resp., odd, even components) of G. An important result in matching theory is due
to Tutte [8].

Theorem 1.1 (Tutte’s Theorem) A graph G has a perfect matching if and only if
ω0(G−X) ≤ |X| for all X ⊆ V (G).

In 1958, Berge [3] extended Tutte’s Theorem to give the exact size of a maxi-
mum matching in a graph G. Define the deficiency of G, denoted def(G), by
maxX⊆V (G){ω0(G−X)− |X|}, where the maximum is taken over all proper subsets
of V (G).

It can be shown that def(G) is the number of vertices unmatched by a maximum
matching in G, and thus we have the following.

Theorem 1.2 (Tutte-Berge Formula) The maximum size of a matching in a graph

G is
|V (G)| − def(G)

2
.

Motivated by the above formula, we define a Tutte set in G to be a subset X ⊆
V (G) such that ω0(G−X)− |X| = def(G). These sets were referred to as barriers
in [7].
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In [1] , we studied the structure of maximal Tutte sets in graphs. In this note we
consider the algorithmic complexity of finding maximal and maximum Tutte sets in
graphs.

We begin with some necessary definitions and theorems from [1].

Let G be a graph. The Edmonds-Gallai decomposition of G is the partition DG ∪
AG ∪ CG of V (G) given by

• DG = {v ∈ V (G) | some maximum matching in G fails to match v}

• AG = {u ∈ V (G)−DG | u is adjacent to a vertex in DG}

• CG = V (G)−DG − AG.

In what follows, we omit the subscript G, if understood.

In particular, if G contains a perfect matching, then D = A = ∅, and G[C] = G.
The Edmonds-Gallai decomposition of a graph can be obtained efficiently by using
Edmonds’ matching algorithm [4].

Before stating the Edmonds-Gallai Structure Theorem, we need the following defini-
tions. A graph H is said to be factor-critical if deleting any vertex from H results
in a graph with a perfect matching. Such a matching in H is called near-perfect.
The primary importance of the Edmonds-Gallai decomposition is contained in the
following theorem.

Theorem 1.3 (Edmonds-Gallai Structure Theorem) Let G be a graph and D∪A∪C
be the Edmonds-Gallai decomposition of G. Then A is a Tutte set, G[D] is the union
of the odd components of G − A, each of which is factor-critical, and G[C] is the
union of the even components of G − A. Moreover, any maximum matching in G
consists of

• a perfect matching in G[C];

• a near-perfect matching in every (odd) component of G[D];

• an edge joining v to some vertex in D, for every v ∈ A.

The Edmonds-Gallai decomposition of G is closely related to the structure of max-
imal Tutte sets in G. Indeed [7], the set A is the intersection of all the maximal
Tutte sets in G, and no vertex in the set D can occur in any Tutte set of G. In fact,
we have (cf. Theorem 3.5 in [1])

Theorem 1.4 Let G be a graph, and X ⊆ V (G). Then X is a maximal Tutte set
in G if and only if X = A ∪ Z, where Z is a maximal Tutte set in G[C].
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Since G[C] always contains a perfect matching [7], this shows that finding maximal
Tutte sets in G reduces to finding maximal Tutte sets in graphs which contain a
perfect matching. In the sequel, therefore, we will focus on the complexity of finding
a maximal Tutte set in a graph with a perfect matching.

In [1], we found that the study of maximal Tutte sets in a graph G with a per-
fect matching is greatly facilitated by introducing a related graph D(G). When G
contains a perfect matching, we define D(G) as follows: V (D(G)) = V (G), and
E(D(G)) = {(x, y) | G− {x, y} contains a perfect matching}. We call a graph H a
D-graph if H = D(G) for some graph G.

There is a useful alternative definition of E(D(G)). Let M be a perfect matching
in G. We denote by PM [x, y] an M -alternating-path in G joining x and y, which
begins and ends with an edge in M . Similarly, we denote by PM(x, y) an M -
alternating-path in G joining x and y, which begins and ends with an edge not in
M ; the M -alternating-paths PM [x, y) and PM(x, y] are defined analogously. By a
theorem of Berge [2], (x, y) ∈ E(D(G)) if and only if there exists a path PM [x, y]
in G. Clearly, this definition of E(D(G)) is independent of the choice of the perfect
matching M .

A key result for this paper is the following (cf. Theorem 3.4 in [1]).

Theorem 1.5 Let G be a graph with a perfect matching, and let X ⊆ V (G). Then
X is a maximal Tutte set in G if and only if X is a maximal independent set in
D(G).

Let M be a perfect matching in G and x ∈ V (G). We denote by x
′
the vertex in

V (G) that is matched to x under M . We note that if (x, y) ∈ E(G) − M , then
(x

′
, y

′
) ∈ E(D(G)) since G contains the 3-path PM [x

′
, y

′
] = (x

′
, x, y, y

′
). Thus G is

isomorphic to a spanning subgraph of D(G) via the mapping from V (G) to V (D(G))
given by x → x

′
. We denote this fact by G � D(G).

We define the iterated D-graphs of G recursively as follows: D0(G) = G, and
Dk(G) = D(Dk−1(G)), for k ≥ 1. Since V (D(G)) = V (G) and G � D(G), it follows
that for any graph G, there exists an integer l ≥ 0 such that Dl(G) ∼= Dl+1(G). We
call the smallest such integer l the level of G and denote it by level(G). In [1], we
prove the following unexpected result.

Theorem 1.6 For any graph G, level(G) ≤ 2.

The graphs G of level 0 (i.e., with G ∼= D(G)) will be of special interest. In [1],
we characterize such graphs using the following definition. Let G be a graph with
a perfect matching M . We say G has the C4-property if and only if whenever G
contains a path PM(x, y) of length 3, G also contains the edge (x, y).

In [1] we prove the following; for convenience, we include the proof here.

Theorem 1.7 Let G be a graph with a perfect matching. Then G has level 0 if and
only if G satisfies the C4-property.
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Proof: Let M be a perfect matching in G.

(⇒) Suppose G contains a path PM(x, y) of length 3. If [x, y] ∈ M we are done. Else
[x

′
, x] o PM(x, y) o [y, y

′
] is a path PM [x

′
, y

′
] in G of length 5, and (x

′
, y

′
) ∈ E(D(G)).

Since G ∼= D(G) via the mapping x → x
′
, it follows that (x, y) ∈ E(G). Thus G

has the C4-property.

(⇐) Let (u
′
, v

′
) ∈ E(D(G)). It suffices to show that (u, v) ∈ E(G). Since (u

′
, v

′
) ∈

E(D(G)), there exists a path PM [u
′
, v

′
] in G, and thus a path

PM(u, v) = (u, a1, a
′
1, a2, a

′
2, . . . , ar, a

′
r, v) in G. Since G has the C4-property, we

obtain by a simple iterative argument that G contains the edges

(u, a2), (u, a3), . . . , (u, ar), (u, v). �

2 Main Results

We now summarize the remainder of this paper. In Section 2.1, we give two efficient
algorithms to construct maximal Tutte sets in graphs. In Section 2.2, we show that
it is NP-complete to find maximum Tutte sets in general graphs, and that it remains
NP-complete for the class of planar graphs, k-connected graphs, and triangle-free
graphs. By contrast, we show in Section 2.3 that maximum Tutte sets can be found
in polynomial time for graphs having level 0 or 1, elementary graphs, and 1-tough
graphs. We conclude in Section 3 with a short discussion of some open questions.

2.1 Efficient Algorithms for Maximal Tutte Sets

We now present two efficient algorithms to find a maximal Tutte set in a graph.

The first algorithm uses Theorems 1.4 and 1.5. Given G, find the Edmonds-Gallai
decomposition D ∪ A ∪ C of V (G). Construct D(G[C]), and find a maximal inde-
pendent set Z in D(G[C]). By Theorems 1.4 and 1.5, Z is a maximal Tutte set in
G[C] and A ∪ Z is a maximal Tutte set in G.

The second algorithm is based directly on the Edmonds-Gallai Structure Theorem.

Algorithm: Maximal Tutte set in G

Let D0 ∪ A0 ∪ C0 be the Edmonds-Gallai decomposition of V (G);

X := A0; G0 := G[C0]; i := 0;

while Ci 6= ∅ do

let vi be an arbitrary vertex in Ci;
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let Di+1 ∪ Ai+1 ∪ Ci+1 be the Edmonds-Gallai decomposition of V (Gi − vi);

X := X ∪ Ai+1 ∪ {vi}; Gi+1 := G[Ci]; i := i + 1;

return X

To see that the algorithm is correct, note that E(Ci, Di) = ∅ (by definition) and
Di+1 ⊆ Ci. Thus E(Di, Dj) = ∅ for i 6= j. Since the components of G[Di], i ≥ 0,
are factor-critical by the Edmonds-Gallai Structure Theorem, it follows that all the
components of G − X = G[D0 ∪ D1 ∪ . . .] are also factor-critical, and so X is a
maximal Tutte set in G.

It can be shown that the set X returned by the second algorithm will be a maximum
Tutte set of G if and only if vi ∈ Ci is always selected to be a vertex which occurs in
a maximum Tutte set of G[Ci]. But as we are about to see, selecting such a vertex
is almost certainly intractible.

2.2 Finding a Maximum Tutte Set is NP-complete

Consider the following decision problem.

MAX TUTTE SET

INSTANCE: Graph G, integer k ≥ 0.

QUESTION: Does G contain a Tutte set X with |X| ≥ k?

Theorem 2.1 MAX TUTTE SET is NP -complete.

Proof: Clearly MAX TUTTE SET ∈ NP , and we only show it is NP -hard.

We will use a polynomial reduction from the following well-known NP -complete
problem [5].

INDEPENDENT SET

INSTANCE: Graph G, integer k ≥ 0.

QUESTION: Is α(G) ≥ k?

Let (H, k) be any instance of INDEPENDENT SET, where V (H) = {v1, v2, . . . , vn}.
Form the graph H

′
by attaching a graph Si to each vertex vi, where Si consists of a

C4 : vi, ai,1, ai,2, ai,3, vi with one chord (ai,1, ai,3). One easily checks that H
′
contains

a perfect matching. Concerning D(H
′
), note that

1. D(Si) is complete, except for the edge (ai,1, ai,3);

2. V (H) is an independent set in D(H
′
);
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3. If (vi, vj) ∈ E(H), there is a complete bipartite join between D(Si) − vi and
D(Sj)− vj in D(H

′
);

4. If (vi, vj) /∈ E(H), there are no edges in D(H
′
) joining D(Si) and D(Sj).

Let m(H ′) denote the cardinality of a maximum Tutte set in H ′. Using the above
observations and Theorem 1.5, it is now easy to see that

m(H
′
) = α(D(H

′
)) = |V (H)|+ α(H).

This completes the polynomial reduction. �

It is interesting to consider the complexity of MAX TUTTE SET for k-connected
graphs, where k ≥ 2. We note that trivially INDEPENDENT SET remains NP-
complete for connected graphs.

Theorem 2.2 MAX TUTTE SET is NP -complete for k-connected graphs, for any
k ≥ 2.

Proof: The proof follows the same lines as the proof of Theorem 2.1. Given H
we now construct H ′ as follows. For every vi ∈ V (H), we attach the graph Si as
shown in Figure 1. In Figure 1, each circle represents a set of k independent vertices,
where Vi ∈ Si is identified with vi ∈ H. The double edge connecting sets of vertices
represents a complete bipartite join. To complete the construction of H ′, we connect
Vi to Vj by a complete bipartite join if and only if (vi, vj) ∈ E(H).

Vi

Si :
Ai,1

Ai,2

Ai,3

Ai,4

Ai,5

Ai,7

Ai,6

xiyi

Figure 1: Each circle represents k independent vertices, and each double edge rep-
resents a complete bipartite join.

It is easy to see that if H is connected, then H ′ is k-connected. Since each Si has
a perfect matching, so does H ′. It can be shown that no perfect matching in H ′

can contain an edge joining a vertex of Vi to a vertex of Vj. Note that D(H ′) has
properties analogous to (1)-(4) in Theorem 2.1. Since {xi} ∪

⋃3
k=0 Ai,2k+1 forms a
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maximum independent set in D(Si), and {yi} ∪ Vi are also independent in D(Si),
we have

m(H
′
) = α(D(H

′
)) = α(H)(4k + 1) + (|V (H)| − α(H))(k + 1)

= (k + 1)|V (H)|+ 3kα(H),

completing the polynomial reduction. �

Now suppose that H is a 2-connected planar graph with a perfect matching M , and
let Si be as in Figure 1 with k = 1. Construct H ′ as in the proof of Theorem 2.2, but
add an edge between vertices Ai,4 and Aj,4 precisely if (vi, vj) ∈ M . The resulting
graph H ′ will be planar and 2-connected. Moreover, D(H ′) has the same properties
as D(H ′) in the proof of Theorem 2.2, with the exception that now {yi} ∪ Vi ∪Ai,4

are independent in D(Si). Hence we have

m(H
′
) = α(D(H

′
)) = 5α(H) + 3(|V (H)| − α(H))

= 3|V (H)|+ 2α(H).

Since INDEPENDENT SET is NP-complete for the class of 2-connected planar
graphs with a perfect matching [6], we have the following result.

Theorem 2.3 MAX TUTTE SET is NP-complete for the class of 2-connected pla-
nar graphs.

In the proof of Theorem 2.2, note that if H is triangle-free, then so is H ′. Since
INDEPENDENT SET remains NP-complete for triangle-free graphs [5], we have:

Theorem 2.4 MAX TUTTE SET is NP-complete for triangle-free graphs.

2.3 Classes of Graphs for which MAX TUTTE SET can be
Solved in Polynomial Time

In contrast to the NP -completeness results of Section 2.2, we now consider sev-
eral interesting classes of graphs in which maximum Tutte sets can be found in
polynomial time.

2.3.1 Graphs with Level 0 or 1

We will prove

Theorem 2.5 MAX TUTTE SET ∈ P for the class of graphs with level 0 or 1.

In order to prove this, we first require

Lemma 2.6 INDEPENDENT SET ∈ P for the class of level 0 graphs.
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Proof of Lemma 2.6: Let G be a graph with level(G) = 0, and let M be a perfect
matching in G. Let I0 be an independent set in G, and let S0 = I0 ∪ I

′
0, where I

′
0

consists of the mates of the vertices of I0 under M . Note that S0 can be partitioned
into |I0| sets, each of which induces a clique whose vertices are perfectly matched
under M .

Suppose now that I ⊆ S ⊆ V (G), where

1. I is independent in G;

2. S can be partitioned into |I| sets, each of which induces a clique whose vertices
are perfectly matched under M .

If S = V (G), then clearly I is a maximum independent set in G. Otherwise, there
exists an edge (v, v

′
) ∈ M , with v, v

′
/∈ S. If v and v

′
are adjacent, respectively,

to distinct vertices x, y ∈ I, then by the C4-property, x must be adjacent to y,
contradicting the independence of I. Thus there cannot be two independent edges
between two vertices in I and {v, v

′}.
We now consider two cases, indicating in each how to redefine I and S so that |S|
increases, and (1) and (2) still hold. By iterating this procedure, we eventually
obtain S = V (G), at which point I will be a maximum independent set in G.

Case 1: v (resp., v
′
) is not adjacent to any vertex in I.

Redefine I to be I ∪ {v} (resp., I ∪ {v′}), and S to be S ∪ {v, v
′}. It is easy to see

that (1) and (2) still hold.

Case 2: There exists a unique vertex x ∈ I such that (x, v), (x, v
′
) ∈ E(G).

Let K be the even clique in the partition of V (S) that contains x, and let y be any
vertex in K − x. Of course, x and y are matched in some perfect matching in K. If
y were adjacent to a vertex z ∈ I − x, then by the C4-property, v and v

′
are each

adjacent to z, contradicting the uniqueness of x ∈ I as a neighbor of both v and
v

′
. Thus Iy = (I − x) ∪ {y} is an independent set in G for any y ∈ K − x, with

|Iy| = |I|.
Since (x, v), (x, v

′
) ∈ E(G), y is the only vertex in Iy that might be adjacent to

either v or v
′
. If v (resp., v

′
) is not adjacent to y, then redefine I to be Iy ∪ {v}

(resp., Iy ∪ {v
′}), and S to be S ∪ {v, v

′}, observing that (1) and (2) still hold. But
if v, v

′
are each adjacent to each y ∈ K, then K ∪ {v, v

′} is an even clique. Leaving
I unchanged, but redefining S to be S ∪ {v, v

′}, we see that (1) and (2) still hold.

This proves Lemma 2.6. �

Proof of Theorem 2.5: Let M be a perfect matching in G.

If level(G) = 0, let I be a maximum independent set in G. By Lemma 2.6, we
can obtain I in polynomial time. Since G ∼= D(G) and G � D(G), we have that
I

′
= {x′ | x ∈ I} is a maximum independent set in D(G). But then by Theorem

1.5, I
′
is a maximum Tutte set in G.
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If level(G) = 1, then level(D(G)) = 0. By Lemma 2.6, we can construct a maximum
independent set I in D(G) in polynomial time. By Theorem 1.5, I is a maximum
Tutte set in G. �

2.3.2 Elementary Graphs

A graph G is called elementary if it contains a perfect matching and if the edges
which occur in a perfect matching in G induce a connected subgraph. A substantial
study of elementary graphs and their properties is given in [7], where the following
result is proved.

Theorem 2.7 Let G be a graph with a perfect matching. Then G is elementary if
and only if G satisfies any of the following conditions:

(i) the maximal Tutte sets in G form a partition of V (G);

(ii) CG−x = ∅, for all x ∈ V (G);

(iii) for any non-empty Tutte set X ⊆ V (G), G−X has only odd components.

The following is also proved in [7] (cf. Theorem 5.2.2(b)).

Theorem 2.8 Let G be an elementary graph, with x, y ∈ V (G). Then G − {x, y}
has a perfect matching if and only if x and y occur in different maximal Tutte sets
in G.

Theorems 2.7(i) and 2.8, together with the definition of D(G), immediately give the
following.

Theorem 2.9 A graph G is elementary if and only if D(G) is a complete multipar-
tite graph.

Since finding a maximum independent set in a complete multipartite graph is trivial,
Theorem 1.5 immediately yields the following result.

Theorem 2.10 MAX TUTTE SET ∈ P for the class of elementary graphs.

2.3.3 1-Tough Graphs

A graph G is called 1-tough if ω(G−X) ≤ |X| for all non-empty X ⊆ V (G). We
wish to consider the complexity of finding maximum Tutte sets in 1-tough graphs.
To this end, we now prove two theorems.

Theorem 2.11 If G is 1-tough on an odd number of vertices, then G is factor-
critical.

10



Proof: Suppose G is 1-tough on an odd number of vertices, but not factor-critical.
Then there exists v ∈ V (G) such that G′ = G − v has no perfect matching. Thus
there exists X ′ ⊆ V (G′) with ω0(G

′ − X ′) = |X ′| + 1 + k, where k ≥ 0. Setting
X = X ′ ∪ {v}, we have

ω(G−X) = ω0(G−X) + ωe(G−X)

= ω0(G
′ −X ′) + ωe(G

′ −X ′)

= |X ′|+ 1 + k + ωe(G
′ −X ′)

= |X|+ k + ωe(G
′ −X ′)

≥ |X| ≥ 1.

Since G is 1-tough, k = ωe(G
′ − X ′) = 0; otherwise ω(G − X) > |X| ≥ 1, a

contradiction. Letting H1, . . . , H|X′|+1 denote the odd components of G′ − X ′, we

find |V (G)| = 1 + |X ′|+
∑|X′|+1

i=1 |V (Hi)| is even, a contradiction. �

Theorem 2.12 If G is 1-tough on an even number of vertices, then G is elementary.

Proof: Clearly G contains a perfect matching. If G is not elementary, then by
Theorem 2.7(iii), G would contain a nonempty Tutte set X such that G−X contains
one or more even components. Since X is a Tutte set, G−X contains at least |X|
odd components as well. Thus ω(G−X) ≥ |X|+ 1 > |X| ≥ 1, and G would not be
1-tough a contradiction. �

From Theorems 2.11 and 2.12 we have the following.

Theorem 2.13 MAX TUTTE SET ∈ P for the class of 1-tough graphs.

Proof: Let G be a 1-tough graph on n vertices. If n is odd, then G is factor-critical
by Theorem 2.11, and thus the only Tutte set in G is the empty set. If n is even,
then G is elementary by Theorem 2.12, and we can find a maximum Tutte set in G
in polynomial time by Theorem 2.10. �

Corollary 2.14 MAX TUTTE SET ∈ P for the following classes of graphs:

(a) hamiltonian graphs,

(b) 2-connected claw-free graphs,

(c) k-regular, k-edge-connected graphs, for any k ≥ 1.

Proof: It is well-known that hamiltonian graphs and 2-connected claw-free graphs
are 1-tough. It is also easy to show that k-regular, k-edge-connected graphs are
1-tough for any k ≥ 1. �
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3 Open problems

We conclude with several open problems.

1. We showed that MAX TUTTE SET can be solved in polynomial time for
graphs of level 0 or 1, elementary graphs, and 1-tough graphs. Are there other
interesting classes of graphs for which MAX TUTTE SET can be solved in
polynomial time?

2. We know that MAX TUTTE SET is NP-complete for 2-connected planar
graphs (Theorem 2.3) and polynomial for 4-connected planar graphs, since
they are hamiltonian (Corollary 2.14). What is the complexity of MAX
TUTTE SET for 3-connected planar graphs?

3. By Theorem 2.13, MAX TUTTE SET can be solved in polynomial time for
1-tough graphs, and hence for planar 1-tough graphs. Given ε > 0 , is MAX
TUTTE SET polynomial for planar (1− ε)-tough graphs?

We strongly believe that MAX TUTTE SET is NP-complete for (1− ε)-tough
general graphs. A possible approach to proving this is to first note that INDE-
PENDENT SET remains NP-complete for the class of hamiltonian graphs. If
H in the proof of Theorem 2.2 is hamiltonian, the resulting graph H ′ appears

to have toughness k + 1
k + 2

, with tough set V1 ∪ {y1}.

4. The class of D-graphs has been useful in our study of Tutte sets. But it remains
an open problem whether level 1 D-graphs can be recognized in polynomial
time (the problem is uninteresting for level 0 or 2 graphs, of course). This
recognition problem becomes trivial for the class of bipartite graphs, since
it was proved in [1] that a bipartite graph G is a D-graph if and only if
level(G) = 0, and thus there are no bipartite level 1 D-graphs.
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