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Abstract

Dirac showed that a 2–connected graph of order n with minimum
degree δ has circumference at least min{2δ, n}. We prove that a 2–
connected, triangle-free graph G of order n with minimum degree δ
either has circumference at least min{4δ−4, n}, or every longest cycle
in G is dominating. This result is best possible in the sense that there
exist bipartite graphs with minimum degree δ whose longest cycles
have length 4δ − 4, and are not dominating.

1 Introduction

In this note we study long cycles in 2-connected triangle-free graphs. Let
C be a longest cycle in such a graph G. We investigate the length of C as
a function of the minimum vertex degree of G, as well as the structure of
G− C.

We begin with some standard definitions. The specific terminology and
notation required for the proof of our main result is given in the next section.
A good reference for any undefined terms is [18].

We consider only finite undirected graphs without loops or multiple
edges. Let G be such a graph with vertex set V (G) and edge set E(G).
Then G is hamiltonian if it has a Hamilton cycle, i.e., a cycle containing
all of its vertices. It has a Hamilton path if it has a path containing all of
its vertices. A graph G is said to be hamiltonian connected if every pair
of vertices in G are the endvertices of a Hamilton path. We use κ(G) for
the vertex connectivity of G, δ(G) for the minimum vertex degree of G
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and α(G) to denote the cardinality of a largest set of independent vertices
in G. Let ω(G) represent the number of components of G. We say G is
t-tough if |S| ≥ t · ω(G− S) for every subset S of the vertex set V (G) with
ω(G− S) > 1. A cycle C in G is called a dominating cycle if every edge of
G has at least one of its endvertices on C. The circumference of G, denoted
c(G), is the number of vertices on a longest cycle in G. If no ambiguities are
likely to arise, we frequently omit any explicit reference to the graph G by
simply writing δ, κ, etc. We also sometimes identify a subgraph with its
vertex set, e.g., use C for V (C), etc. If H ⊆ V (G) we denote the subgraph
induced by H as 〈H〉.

First, a little background. We begin with a well-known theorem of Dirac
[4].

Theorem 1.1. Let G be a 2-connected graph on n vertices. Then c(G) ≥
min {n, 2δ}.

This result was recently strengthened in [12].

Theorem 1.2. Let G be a 2-connected graph on n vertices. Then either
c(G) ≥ min{n, n + δ − α, 3δ − 3} or G ∈ F∗.

The class of graphs F∗ referred to above is a subclass of the well-known
collection of graphs described by Watkins and Mesner in [17]. All of these
graphs have connectivity two and are recognizable in polynomial time.

In [2], Bondy studied the relationship between a longest cycle C in a
k-connected graph G and the structure of the components of G − C. His
paper, as well as Theorem 1.1, have led many authors to follow this line of
research [4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16].

Our main result is closely related to the following conjecture of Jung
[11].

Conjecture 1.3. Let C be a longest cycle in a k-connected graph, k ≥ 2.
If G−C contains a path with at least k−1 vertices, then |C| ≥ k(δ−k+2).

Note that Conjecture 1.3 reduces to Theorem 1.1 when k = 2. While
partial solutions have been found for k ≤ 6, Conjecture 1.3 remains open.

In this paper, we establish a result analogous to Conjecture 1.3 for
2-connected triangle-free graphs. Note that in Conjecture 1.3 it is not
necessary to assume δ(G) is large. The same is true of our result, given in
Theorem 1.7. By contrast, a number of results on long cycles in triangle-
free graphs have required δ(G) to be large. For example, Brandt [3] was
able to determine all cycle lengths in non-bipartite triangle-free graphs on
n vertices with δ > n/3. Define C(G) to be the set of cycle lengths of a
graph G.

Theorem 1.4. [3] Let G 6= C5 be a triangle-free, nonbipartite graph of
order n. If δ > n/3, then C(G) = {4, 5, ..., r}, where r = min {n, 2(n−α)}.

As a corollary, Brandt obtained the following.
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Corollary 1.5. [3] Let G 6= C5 be a triangle-free non-bipartite graph of
order n. If δ > 3n/8, then G contains a cycle of length l, for 4 ≤ l ≤ n.

A few years earlier, Aung [1] considered the structure of G− C, where
C is a longest cycle in a 2-connected triangle-free graph G. We state his
main result below. Note that it requires a minimum degree condition.

Theorem 1.6. Let C be a longest cycle in a 2-connected triangle-free graph
G on n vertices. If δ ≥ (n + 6)/6, then G− C cannot have two edges.

Our main result is the following.

Theorem 1.7. Let G be a 2–connected triangle–free graph of order n. Then
c(G) ≥ min{n, 4δ − 4} or every longest cycle in G is a dominating cycle.

The proof of Theorem 1.7 is given in Section 3.

2 Preliminaries

The proof of Theorem 1.7 requires some notation and terminology. Let C

be a cycle in G. We denote by
−→
C the cycle C with a given orientation.

Suppose u, v ∈ V (C). We use u+ to denote the successor of u on
−→
C and u−

to denote its predecessor. If U ⊆ V (C) then U+ = {u+ |u ∈ U}, and U−

is defined similarly. Further define u+2 = (u+)+ and u−2 = (u−)−. The
set of all vertices strictly between u and v on

−→
C is symbolized by (u

−→
C v).

If the vertices u and v are to be included in this set, it will be written as
[u
−→
C v]. Similarly, (uPv) and [uPv] denote sets of vertices along a path P .
The neighborhood of a vertex h in A, denoted NA(h), is the set of

all vertices in A that are adjacent to h. We define dA(h) = |NA(h)| and
N+

A (h) = {c ∈ V (A) | hc− ∈ E(G)}, and let NA(B) denote the set of all
vertices in A adjacent to some vertex in B.

Let H be a component of G−C. Following Jung [8], we now define the
relative connectivity of H in G. Consider all nonempty subsets K of V (H)
having NG(K)∪K 6= V (G). We define κH = min |NG−K(K)| over all such
K. Note that κH ≥ κ(G).

If X = {x ∈ V (C) | dH(x) ≥ 2} and Y = {y ∈ H | NC(y) 6=
∅ and NC(y)∩X = ∅}, then let µH = |X∪Y |. Note that µH ≥ min{κH , |H|}.

Now let H be a subgraph (not necessarily a cycle) of G. If for every
pair of vertices x, y ∈ NG−H(H) for which |NH({x, y})| ≥ 2 there exists a
hamiltonian path P = P [x′, y′] of H such that x ∈ N(x′) and y ∈ N(y′),
then H is said to be strongly linked in G. Otherwise H is said to be weakly
linked in G.

A 3–matching M from H to C is a matching that consists of three dis-
tinct edges of G, {x1y1, x2y2, x3y3}, where x1, x2, x3 ∈ V (H) and y1, y2, y3 ∈
V (C).

A subgraph S of G is called a stronghold in G if S is complete and the
NG−S(u) = NG−S(v) for all u, v ∈ V (S).
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Before proving our main theorem we present several useful results.

Lemma 2.1. [1]
Let G be a triangle-free graph on n vertices and let P be a path in G

with end-vertex u. Then |V (P )| ≥ 2dP (u).

Theorem 2.2. [1]
Let a and b be distinct vertices and P a longest ab−path in the 2-

connected, triangle-free graph G. Then each component H of G− P has a
vertex w such that |V (P )| ≥ 2d(w)− 1 ≥ 2δ − 1.

Theorems 2.3 to 2.7 below are due to Jung and appear in [8]. In each
theorem C is a longest cycle in G and H is a component of G− C.

Theorem 2.3. [8]
Let κH ≥ 3 and suppose H contains a cut-vertex. Then there exist

nonadjacent vertices v, w in H such that |V (C)| ≥ 2d(v) + 2d(w) − 4 + ε,
for some nonnegative integer ε.

Theorem 2.4. [8]
Let H be 2-connected and contain no hamiltonian cycle. If κH ≥ 3 then

there exist nonadjacent vertices v, w in H such that |V (C)| ≥ 2d(v)+2d(w).

Theorem 2.5. [8]
Let H be hamiltonian with κH ≥ 3. If H is weakly linked in G, then there

exist nonadjacent vertices v, w in H such that |V (C)| ≥ 2d(v) + 2d(w) +
min {|V (H)|/2, 6} .

Theorem 2.6. [8]
Let H be strongly linked in G and suppose κH ≥ 2. Then there exists a

vertex v in H such that |V (C)| ≥ k(d(v)−k+3)+(κH −k)(|V (H)|+1−k)
whenever 0 ≤ k ≤ |V (H)|+ 1, unless H is a stronghold in G.

Theorem 2.7. [8]
Let H contain a hamiltonian cycle and let κH ≥ 2. If H is strongly

linked in G but not hamiltonian connected, then there exist nonadjacent
vertices v, w in H such that |V (C)| ≥ 2d(v) + 2d(w) + (µH − 2)(|V (H)| −
3)− 6.

3 Proof of Theorem 1.7

Let G be a 2–connected, triangle–free graph on n vertices and suppose that
C is a longest cycle in G. If δ = 2, then the result is immediate from
Theorem 1.1. Hence we assume δ ≥ 3.

If all components of G−C are of order 1, then C is dominating and we
are done. So we begin by establishing the theorem when G−C contains a
component of order 2 or 3.
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Claim: If there exists a component H of G− C with 2 ≤ |V (H)| ≤ 3,
then c(G) ≥ 4δ − 4.

Proof of Claim: Suppose H is a component of G − C with V (H) =
{x, y}. Let NC(x) = U = {u1, u2, . . . , us} and NC(y) = W = {w1, w2, . . . , wt},
where s, t ≥ δ − 1 ≥ 2.

Since G is triangle–free and C is a longest cycle in G, the sets U,U+,W, W+

are pairwise disjoint. Thus

|V (C)| ≥ |U ∪ U+ ∪W ∪W+|
≥ 4(δ − 1)
= 4δ − 4.

Now suppose H is a component of G−C with V (H) = {x, y, z} and E(H) =
{xy, yz}. Let NC(x)∪NC(z) = U = {u1, u2, . . . , us} and let NC(y) = W =
{w1, w2, . . . , wt}, where s ≥ δ − 1 ≥ 2 and t ≥ δ − 2 ≥ 1. Again we
have that the sets U,U+,W,W+ are pairwise disjoint. Since U ∩ W = ∅,
there exist i ∈ {1, 2, . . . , s} and j ∈ {1, 2, . . . , t} such that wj ∈ (ui

−→
C ui+1),

where the indices of vertices in U (resp., W ) are modulo s (resp., t). We
have at once that u−i+1 /∈ U ∪ U+ ∪ W ∪ W+. If we take wj to be the
vertex in W ∩ (ui

−→
C ui+1) closest to ui along

−→
C , then we also have w−

j /∈
U ∪ U+ ∪W ∪W+. Thus

|V (C)| ≥ |U ∪ U+ ∪W ∪W+ ∪ {u−i+1, w
−
j }|

≥ 2dC(x) + 2dC(y) + 2
≥ 2(δ − 1) + 2(δ − 2) + 2
= 4δ − 4.

which completes the proof of the claim. �

Now let H be a component of G− C with |V (H)| ≥ 4. The remainder
of the proof is divided into two cases.

Case 1: κ(G) ≥ 3.

Case 1a: H is hamiltonian connected.

Suppose there exists a vertex v ∈ H having dH(v) ≥ δ − 1. Since
κ(G) ≥ 3 there exists a 3-matching M = {p′p, q′q, r′r} from H to C,
where p

′
, q

′
, r

′ ∈ V (H) and p, q, r ∈ V (C). Let P be the Hamilton path
in H from p′ to q′. Since v ∈ V (P ) and G is triangle-free, we deduce
from Lemma 2.1 that |[p′Pv]| ≥ 2d1 and |[vPq′]| ≥ 2d2, where d1 and d2

represent the degree of v on [vPp′] and [vPq′] respectively. Thus |V (P )| =
|[p′Pv]|+ |[vPq′]| − 1 ≥ 2dH(v)− 1 ≥ 2(δ − 1)− 1 = 2δ − 3. The choice of

5



−→
C implies |(p

−→
C q)| ≥ 2δ − 3. Analogous arguments yield |(q

−→
C r)| ≥ 2δ − 3

and |(r
−→
C p)| ≥ 2δ − 3. Therefore

|V (C)| ≥ |(p
−→
C q)|+ |(q

−→
C r)|+ |(r

−→
C p)|+ |{p, q, r}|

≥ 3(2δ − 3) + 3
= 6δ − 6
≥ 4δ − 4.

Now suppose dC(v) ≥ 2 for all v ∈ H, and let xy ∈ E(H). Let
NC(x) = {x1, x2, . . . , xm} and NC(y) = {y1, y2, . . . , yl}, indices modulo m
and l respectively. Without loss of generality, assume m ≥ l ≥ 2. Since G
is triangle-free and C is a longest cycle in G, the sets NC(x), N+

C (x), NC(y),
and N+

C (y) are pairwise disjoint.
Since NC(x) ∩ NC(y) = ∅, there exists h ∈ {1, 2, . . . ,m} such that

(xh
−→
C xh+1) contains one or more neighbors of y. Let yj (resp. yk) ∈

(xh
−→
C xh+1) be the neighbor of y closest to xh (resp. xh+1) along

−→
C , where

we allow the possibility that yj = yk.
Let P denote a Hamilton path in H joining x and y. Since dH(y) ≥ δ−l,

we have |V (P )| ≥ 2(δ − l), by Lemma 2.1. This implies, given the choice
of
−→
C , that |(xh

−→
C yj)|, |(yk

−→
C xh+1)| ≥ 2(δ − l). Therefore

|V (
−→
C )| ≥ |(xh

−→
C yj) ∪ (yk

−→
C xh+1)|+ |NC(x) ∪ (N+

C (x)− {x+
h })|

+|NC(y) ∪ (N+
C (y)− {y+

k })|
≥ 2(2(δ − l)) + (2m− 1) + (2l − 1)
= 4δ − 2l + 2m− 2
≥ 4δ − 2. �

Case 1b: H is not hamiltonian connected.

We first apply Theorems 2.3 - 2.7 to show that unless H has a very
specific structure, c(G) ≥ 4δ−4. Note that since G is 3-connected, κH ≥ 3.
If H has a cut-vertex, then c(G) ≥ 4δ − 4 by Theorem 2.3. Hence we may
assume H is 2-connected. If H does not contain a Hamilton cycle, then
Theorem 2.4 implies that c(G) ≥ 4δ. Otherwise, H is hamiltonian and we
need to consider how H is linked to

−→
C .

If H is weakly linked to C, then our conclusion is immediate from The-
orem 2.5. So suppose H is strongly linked to C and κH ≥ 4. Since H is
not hamiltonian connected by assumption, and therefore not a stronghold,
Theorem 2.6 with k = 4 yields

|V (C)| ≥ 4(δ − 1) + (κH − 4)(|V (H)| − 3) ≥ 4δ − 4.

Thus we assume H is strongly linked to C and κH = 3. If |V (H)| > 4,
then since µH ≥ κH , c(G) ≥ 4δ − 4 by Theorem 2.7. Thus we may assume
that H is an induced cycle on four vertices.
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Let V (H) = {x, y, z, q} and E(H) = {xy, yz, zq, qx}. Define
U = NC(x) ∪ NC(z) = {u1, u2, . . . , um} and W = NC(y) ∪ NC(q). Note
that U ∩W = U+ ∩W = U ∩W+ = ∅.

Since δ > 2 we are guaranteed that U and W are non-empty. If |U | =
{u} and W = {w}, then G is 2-connected, a contradiction. Hence we
may assume there exists i ∈ {1, . . . ,m} and a vertex w ∈ W such that
w ∈ (ui

−→
C ui+1), indices modulo m. We may also assume that w is the

vertex in W ∩ (ui
−→
C ui+1) closest to ui along

−→
C . The choice of

−→
C implies

that {w−, w−2, w−3, u−i+1} /∈ U ∪ U+ ∪W ∪W+.
Therefore

|V (C)| ≥ |U ∪ U+ ∪W ∪W+|+ |{w−, w−2, w−3, u−i+1}|
≥ 4(δ − 2) + 4
≥ 4δ − 4. �

Hence the theorem is valid for κ(G) ≥ 3.

Case 2: κ(G) = 2.

Let {u, v} be a 2-cut in G. Let T1 and T2 be two components of G −
{u, v}, and let Pi be a longest path in 〈Ti ∪ {u, v}〉, for i = 1, 2. We will
show |V (P1)| ≥ 2δ−1. An identical argument shows that |V (P2)| ≥ 2δ−1,
and thus G will contain a cycle C through u and v with |C| ≥ 2(2δ−1)−2 =
4δ − 4.

Let T
.= 〈T1 ∪{u, v}〉. Since G is 2-connected, any cut-vertex of T must

occur in (u
−→
P1v). If T has cut-vertices, let s1, . . . , sr denote the cut-vertices

of T in order on (u
−→
P1v), and take s0 = u and sr+1 = v. If T is 2-connected,

take s0 = u and s1 = v.
Note that {sj , sj+1} is a 2-cut for G, for some j ∈ {0, . . . , r}. If T is

2-connected, this is trivial since {s0, s1} = {u, v}. If T has cut-vertices,
and (sj

−→
P1sj+1) 6= ∅ for some j ∈ {0, . . . , r}, then {sj , sj+1} is a 2-cut in G.

But for any j ∈ {1, . . . , r}, either (sj−1
−→
P1sj) 6= ∅ or (sj

−→
P1sj+1) 6= ∅, since

otherwise dG(sj) = 2, contradicting δ ≥ 3.
If there exist components H1, . . . ,Hl of G− [sj

−→
P1sj+1] not containing u

or v, then B
.= 〈[sj

−→
P1sj+1]∪H1∪· · ·∪Hl〉 is a 2-connected block with longest

sjsj+1-path [sj
−→
P1sj+1]. Applying Theorem 2.2 to B, we conclude that for

any i ∈ {1, . . . , l}, there exists w ∈ Hi with |V (P1)| ≥ |[sj
−→
P1sj+1]| ≥

2d(w)− 1 ≥ 2δ − 1. If there are no such components of G− [sj
−→
P1sj+1], let

w be any vertex in (sj
−→
P1sj+1). Since N(w) ⊂ [sj

−→
P1sj+1] and G is triangle-

free, we have |V (P1)| ≥ |[sj
−→
P1sj+1]| ≥ 2d(w)− 1 ≥ 2δ − 1. �

Theorem 1.7 is best possible in the sense that there exist bipartite graphs
with minimum degree δ whose longest cycle has length precisely 4δ − 4.
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In addition, these graphs have the property that longest cycles are not
dominating cycles. For δ ≥ 3, simply take three or more disjoint copies of
Kδ,δ−2 and join each vertex in the δ-sets to two new vertices u and v.

We also show that it is necessary to include the possibility that every
longest cycle of G is a dominating cycle. Consider the complete bipartite
graph G = Kp,q where q > p ≥ 3. This graph has δ = p and c(G) =
2p < min{n, 4δ − 5}. However, every longest cycle in such a graph is a
dominating cycle.

4 Concluding Remarks

We conclude with a conjecture on k-connected triangle-free graphs.

Conjecture 4.1. Let G be a k-connected triangle-free graph. Then c(G) ≥
2κ(δ − k + 1) or every longest cycle in G is a dominating cycle.

Note that the cycle bound in Conjecture 4.1 differs from twice the bound
in Conjecture 1.3 by 2k. For k = 2, this is consistent with how our result for
triangle-free graphs differs from twice the known result (Dirac’s Theorem)
for general graphs.

We also have examples to show that Conjecture 4.1, if true, is best
possible in the same sense that Theorem 1.7 is best possible.

For x ≥ 1, let Gj be the graph obtained by joining k ≥ 3 independent
vertices to the j(k + x) vertices in the larger partite sets in

⋃j
i=1 Kx,k+x.

Then

• Gk−1 does not achieve the cycle bound in Conjecture 4.1, but every
longest cycle is dominating.

• Gk exactly achieves the cycle bound, and every longest cycle is dom-
inating.

• Gk+1 exactly achieves the cycle bound, but longest cycles in Gk+1 are
not dominating.
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