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Abstract

Let Γ(n, m) denote the class of all graphs and multigraphs with n
nodes and m edges. A central question in network reliability theory
is the network augmentation problem: For G ∈ Γ(n, m) fixed, what
H ∈ Γ(n, m + k) such that G ⊂ H is t-optimal, that is, maximizes
the tree number t(H)? In the network synthesis problem, where G
is the empty graph on n vertices, it is conjectured that all t-optimal
graphs are simple. We demonstrate that, in the general network
augmentation case, there exists an infinite class of non-empty G for
which the resulting t-optimal augmentations are multigraphs. This
conclusion has ramifications for future attempts to prove or disprove
the multigraph conjecture for the network synthesis problem.

1 Introduction

Graphs and multigraphs are often used to model communication networks,
the nodes representing communication sites and the edges representing the
communication links between the sites. When the links are not perfectly
reliable the resulting model is a probabilistic graph whose individual edges
appear with some probability. Under this model, a well-studied problem
with natural applications is the following.

The Network Synthesis Problem Given n nodes and m edges, each
edge operating independently with probability p, characterize the graph that
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maximizes

Rel(G) =
m∑

i=n−1

si(G)pi(1− p)m−i

where si(G) denotes the number of spanning connected subgraphs of G that
have exactly i edges.

The expression above, called the reliability polynomial of G, is the prob-
ability that the probabilistic graph is connected, or in network terms, the
probability that any communication site can communicate with any other.

For some choices of n and m, the choice of optimal network topology de-
pends on the value of p [?, ?]. For many (n, m) pairs, however, there exists
a certain graph G that maximizes Rel(G) for any choice of p. Such graphs
are called uniformly optimally reliable graphs, or more simply UOR graphs,
and represent the best possible network design in their class regardless of
edge probability p. It is NP-hard to identify UOR graphs [?], and to date
only scattered classes of UOR classes are extant. Since identifying the
graphs themselves has proved difficult, attention has focused on identifying
features that such graphs must possess. All UOR graphs demonstrated to
date are simple graphs, and a prominent conjecture is the following.

The Multigraph Conjecture For m ≤
(
n
2

)
, any UOR graph must be

simple.

It is known that any UOR graph must also maximize t(G), the number of
trees of G, over all graphs in its class. Thus another related conjecture is
that, for m ≤

(
n
2

)
, the graph with the most trees in its class must be simple.

Underlying the Multigraph Conjecture, at least intuitively, is the belief that
the best edge additions to an existing network are always simple edges, or
equivalently that any multigraph can be improved by “stripping out” the
multiedges and resituating those removed edges in some simple manner. Ac-
cordingly, one approach to solving the Multigraph Conjecture is to consider
another problem, also motivated by network modelling concerns, which is
in some sense more general than the synthesis problem.

The Network Augmentation Problem Given an existing probabilistic
graph G, characterize the graph H which has k more edges than G and
which maximizes the reliability polynomial subject to the condition G ⊂ H.

In other words, if we have k edges to add to some base graph G, what is
the best way to add them? We call such an addition of edges a k-edge

2



augmentation of G. When our base graph is equal to the empty graph on
n vertices this problem is in fact the network synthesis problem.

The purpose of this paper is to demonstrate that, for the general network
augmentation problem, the intuition mentioned previously is false: there do
exist simple graphs for which the t-optimal augmentation is a multigraph,
even when other simple augmentations are available. This is demonstrated
for the smallest augmentation case k = 1 in Section Two. In Section Three,
one of the multigraph t-optimal augmentations from Section Two is shown
to be uniformly more reliable than any simple augmentation as well. In
Section Four we extend the results of Sections Two and Three to the 2-
edge augmentation case. Finally in Section Five we demonstrate that for
any choice of k > 0 there exist an infinite number of simple graphs G for
which G + ke, that is, G with k copies of one edge e added, has more trees
than any simple k-edge augmentation of G. This demonstrates that any
k-edge uniformly most reliable augmentation of such a G, if it exists, must
be a multigraph as well.

Our notation and terminology follows that in [?]. We emphasize that G|e
denotes the graph obtained from G by contracting the edge e ∈ G, or
equivalently the graph obtained by identifying the end-vertices of e ∈ G.
We also introduce two additional notations. Let Γ(n, m) denote the class
of all graphs and multigraphs which have n nodes and m edges. Finally,
let tG(e) denote the number of trees of G which contain the edge e ∈ G.

2 Single-Edge Augmentations

The base graphs we will be augmenting all belong to a particular family of
graphs or are slight modifications of that family, which we describe here. A
star graph is a bipartite graph in which one of the parts is a single vertex,
i.e. a star graph is K1,s for some s. Our base graphs will have complements
consisting of two stars (and possibly some isolated vertices). Note that this
implies that our base graphs and their simple edge augmentations will be
members of the same family. An example of one of our base graphs is
shown below. The graph pictured will turn out to be the smallest base
graph known for which the best augmentation results in a multigraph.

Formulas for t(G) for members of our family of graphs are available from a
number of sources. One such statement is below.

Lemma 2.1 [?] Let G consist of two stars with s and t leaves respectively,
and possibly some isolated vertices. Then t(G) = nn−2−s−t(n−1)s+t−2(n−
1− s)(n− 1− t).
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Since we will be trying to maximize t(G) when G is of the form above, an
important tool is the following.

Corollary 2.2 Let s + t = k be fixed, and let G consists of two stars of s
and t leaves respectively. Then t(G) is maximized when |s − t| is made as
small as possible, i.e. when the stars are as equal in order as possible. In
particular, when k is of even parity we require s = t and when k is odd we
require s = t− 1.

Proof: Rewrite t(G) = nn−2−k(n−1)k−2
[
(n− 1)2 − k(n− 1) + st

]
. The

only quantity not fixed is st, which for s+ t fixed is maximized when |s− t|
is as small as possible. �

Our multigraph augmentations will all involve the addition of multiple
copies of the same edge. Call that edge e ∈ G. The following propo-
sition will be of aid in evaluating t(G + ke), the graph obtained by the
addition of k copies of e.

Lemma 2.3 Let G be a graph and let e ∈ E(G). Then t(G + ke) = t(G) +
kt(G|e).

Proof: Recall that tG(e) denotes the number of trees of G that contain
e. Each copy of e we add to G increases the number of trees by precisely
tG(e), or t(G + ke) = t(G) + ktG(e). But tG(e) is equal to the number of
trees of G|e, and the result follows. �

Our G + ke graphs can only be t-optimal and/or most reliable if we are
adding additional copies of the edge of G that carries the most trees, i.e. if
tG(e) ≥ tG(f) for all f 6= e. For graphs in our family this edge is easy to
identify. We require one preliminary result.

Lemma 2.4 [?] Kn is t-optimal.

Lemma 2.5 Let G ∈ Γ(n, m) be such that G consists of exactly two stars
(no isolated vertices). Then the edge of G which carries the most trees is
the edge connecting the central nodes of the two stars.

Proof: We make use again of the fact that the number of trees an edge
e ∈ G carries is equal to t(G|e). When e is the edge connecting the central
nodes of the two stars, G|e = Kn−1. Since the complete graph is known
to be t-optimal over all graphs and multigraphs in its class, and since all
other edge contractions of G result in a graph in the class of Kn−1, e must
carry at least as many trees as any other edge in G. �

With the above tools in place the calculations are now straightforward. We
will consider the n even and n odd case in turn.
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Lemma 2.6 Let G ∈ Γ(n, m) with n even such that G = K1, n−2
2
∪K1, n−2

2
.

Let e be the edge that connects the central nodes of the two stars. Then:

t(G + e) =
1
4
n2(n− 1)n−4 + (n− 1)n−3

Let G ∈ Γ(n, m) with n even such that G = K1, n−2
2
∪K1, n−2

2 −1∪K1. Then:

t(G) =
1
4
n2(n− 1)n−5(n + 2)

Proof: The first expression for G + e is derived by using Lemma 2.3 to
obtain t(G + e) = t(G) + t(G|e) = t(G) + t(Kn−1) and substituting the
appropriate expressions for s and t in Lemma 2.1. The second expression
is a direct application of Lemma 2.1. �

Theorem 2.7 Let G ∈ Γ(n, m) with n even such that G = K1, n−2
2
∪

K1, n−2
2

. Let e be the edge that connects the central nodes of the two stars.
Then for n ≥ 8 the t-optimal 1-edge augmentation of G consists of G with
an additional e edge added.

Proof: The only simple edge additions create a graph of the form de-
scribed in Lemma 2.1. Furthermore, the simple edge augmentations are
identical up to isomorphism. Call this graph Gs. By Lemma 2.5 we know
the best multigraph augmentation involves adding an additional e edge.
Call this graph Gm. Using Lemma 2.6 and simplifying gives

t(Gm)− t(Gs) =
1
4
n2(n− 1)n−4 + (n− 1)n−3

−1
4
n2(n− 1)n−5(n + 2)

=
1
4

(n− 1)n−5(n2 − 8n + 4)

It is easily verified that n2 − 8n + 4 is positive for n ≥ 8 and negative for
other positive n, and our result is proved. �

The n odd case is very similar. Because of the asymmetry between the
stars there are now two possible graphs obtainable via adding a simple
edge, but by Corollary 2.2 we need only consider the simple edge addition
that results in G + e consisting of two stars with identical numbers of leaves
and an isolated vertex.
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Lemma 2.8 Let G ∈ Γ(n, m) with n odd such that G = K1, n−1
2
∪K1, n−3

2
.

Let e be the edge that connects the central nodes of the two stars. Then:

t(G + e) =
1
4

(n + 1)(n− 1)n−3 + (n− 1)n−3

Let Gs ∈ Γ(n, m) with n odd such that G = K1, n−3
2
∪K1, n−3

2
∪K1. Then:

t(Gs) =
1
4
n(n− 1)n−5(n + 1)2

Proof: Exactly as in the even case. �

The odd result now follows.

Theorem 2.9 Let H ∈ Γ(n, m) with n odd such that H = K1, n−1
2
∪K1, n−3

2
.

Let e be the edge that connects the central nodes of the two stars. Then for
n ≥ 11 the G ∈ Γ(n, m + 1) with H ⊂ G that has the most trees consists of
H with another edge e added.

Proof: The best simple edge addition creates a graph of the form de-
scribed in Lemma 2.8. Accordingly, call this graph Gs and let the graph
created by multigraphing e be denoted Gm. By Lemma 2.8 we have

t(Gm)− t(Gs) =
1
4

(n + 1)(n− 1)n−3 + (n− 1)n−3

−1
4
n(n− 1)n−5(n + 1)2

=
1
4

(n− 1)n−5(n2 − 10n + 5)

It is easily verified that n2− 10n + 5 is positive for n ≥ 11 and negative for
other positive n, and our result is proved. �

In summary we list the cases where the t-optimal single-edge augmentation
results in a multigraph.

Theorem 2.10 Let G be the graph on n vertices whose complement G =
K1,s∪K1,t where s = bn−2

2 c and t = dn−2
2 e. Let e be the edge that connects

the central nodes of the two stars. Then if n = 8 or n ≥ 10, adding an
additional multiedge e creates more spanning trees than adding any single
simple edge.
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We note that none of the graphs here examined, base graphs or their single-
edge augmentations, are t-optimal graphs in the synthesis sense. (It is
known that Kn minus a matching is t-optimal over all simple graphs in its
class, and all of the graphs examined here have fewer trees than Kn minus a
matching.) We also note that, for the graph examined, the t-optimal 2-edge
augmentation is simple, and other k-edge augmentations for 3 ≤ k ≤ 6 are
as well.

3 Reliable Single-Edge Augmentations

It is also possible to show that, for the graph pictured in Figure One, the
multigraph single-edge augmentation is uniformly more reliable than the
simple single-edge augmentation. We require two preliminary facts, the
first of which is widely known and the second of which is a consequence of
the definition of the reliability polynomial.

Lemma 3.1 The Factor Theorem [?] For any graph or multigraph G,
including those with loops,

Rel(G) = pRel(G|e) + (1− p)Rel(G− e)

Lemma 3.2 If e ∈ G is a loop, then Rel(G) = Rel(G− e).

Proof: Recall that Rel(G) is just the probability that the probabilistic
graph is connected. Whether e is operational or not has no bearing on
whether G is connected or not, and the result follows. �

We are now prepared to show that the multigraph augmentation previously
shown to be t-optimal is in fact uniformly more reliable than the simple
edge augmentation available. The proof is computational and aided by the
relatively small size of the graph.

Theorem 3.3 Let G ∈ Γ(8, 22) be the graph pictured in Figure One, and
let Gs and Gm be the simple and multigraph single-edge augmentations
previously discussed for this case. Then Rel(Gs) < Rel(Gm) for all p ∈
(0, 1).

Proof: We calculate the reliability polynomials directly. Using Maple
8.0, we can calculate the reliability polynomials for simple graphs. The
calculation follows.

Rel(Gs) = p7
(
2160p16 − 40080p15 + 349992p14 − 1909932p13
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+7293360p12 − 20675392p11 + 45034474p10 − 76933841p9

+104254382p8 − 112541819p7 + 96560945p6 − 65242955p5

+34085708p4 − 13337485p3 + 3695483p2 − 649879p

+54880)

Gm can be decomposed into simple graphs using the Factor Theorem, and
is thus amenable to calculation as well. Let e denote either one of the
multiedges.

Rel(Gm) = pRel(Gm|e) + (1− p)Rel(Gm − e)
= pRel(K7) + (1− p)Rel(G)
= p7

(
1800p16 − 33912p15 + 300564p14 − 1664130p13

+6444918p12 − 18521964p11 + 40882587p10 − 70742433p9

+97057111p8 − 106025135p7 + 92010526p6 − 62845533p5

+33171204p4 − 13104705p3 + 3663267p2 − 649387p

+55223)

On the second line above we have taken advantage of Lemma 3.2. (Gm|e is
in fact K7 with a single loop attached.) Subtracting these two expressions
and simplifying gives

Rel(Gm)−Rel(Gs) = −p7
(
360p12 − 4728p11 + 28356p10 − 102570p9

+248754p8 − 424840p7 + 521367p6 − 459314p5

+283699p4 − 115696p3 + 26818p2 − 1864p

−343) (1− p)4

It is verifiable (via Sturm sequences, for example), that the expression above
is positive for all p ∈ (0, 1), and so Rel(Gm) > Rel(Gs) for all p ∈ (0, 1). �

Thus multigraph augmentations may be, not only t-optimal when compared
to simple augmentations, but uniformly more reliable as well. It may very
well be that a large number of the family of graphs under discussion are
uniformly more reliable than the simple augmentation alternatives, but we
know of no analytic method that would demonstrate that fact.

4 Two-Edge Augmentations

Our base graphs are slight alterations of the family of graphs previously
discussed. For this new family we take the graphs from Section Two and
omit the edge e which connects the stars. An example which corresponds
to the previous figure is shown below.
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The analysis follows closely the lines of the previous section, and conse-
quently where appropriate we omit some of the proofs.

Theorem 4.1 [?] Let G consist of two stars with s and t leaves respectively,
as well as the edge connecting the central nodes of the two stars, and possibly
some isolated vertices. Then t(G) = nn−2−s−t(n− 1)s+t−2(n− 1− s)(n−
1− t)− nn−3−s−t(n− 1)s+t−1(2n− 2− s− t).

Corollary 4.2 Let s + t = k be fixed, and let G be of the form described
above. Then t(G) is maximized when |s − t| is made as small as possible,
i.e. when the stars are as equal in size as possible. In particular, when k is
of even parity we require s = t and when k is odd we require s = t− 1.

We again consider the n even and n odd case in turn. From the discussions
of the previous section it is easy to see that the following holds.

Lemma 4.3 Let G ∈ Γ(n, m) with n even such that G = K1, n−2
2
∪K1, n−2

2
∪

e, where e is the edge joining the central nodes of the stars. Let G + 2e =
Gm. Then

t(Gm) =
1
4
n2(n− 1)n−4 − (n− 1)n−3

Before we compare the t-optimal simple augmentation to the t-optimal
multigraph augmentation we need to determine which simple augmentation
is best. There are two simple augmentations which need to be compared,
one of which adds edge e and one of which does not. Up to isomorphism,
there is but one simple way to add 2 edges to our base graph while adding
edge e. t(G) has been derived for this case in the previous section in Lemma
2.6, and as before we will call this graph Gs. There are two ways to add
two simple non-e edges to our base graph, but by Corollary 4.2 we need
only consider the case where the two edges are distributed evenly, one to
each star. We will call this simple graph Gt.

Lemma 4.4 Let Gt ∈ Γ(n, m) with n even such that Gt consists of K1, n−4
2
∪

K1, n−4
2
∪ e and two isolated vertices, where e is the edge joining the central

nodes of the stars. Then:

t(Gt) =
1
4
n(n− 1)n−6(n3 + 8)

Lemma 4.5 Let Gs ∈ Γ(n, m) with n even such that Gs consists of K1, n−2
2
∪

K1, n−4
2

, and let Gt ∈ Γ(n, m) with n even such that Gt consists of K1, n−2
2
∪

K1, n−4
2
∪ e where e is the edge joining the central nodes of the two stars.

Then t(Gs) > t(Gt).
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Proof: The expression for t(Gs) was derived in the previous section and
the expression for t(Gt) immediately preceded this lemma. Subtracting we
arrive at:

t(Gs)− t(Gt) =
1
4
n2(n− 1)n−4 + (n− 1)n−3 − 1

4
n(n− 1)n−6(n3 + 8)

=
1
4

(n− 1)n−6(2n3 − 11n2 + 12n− 12)

which is positive for all n ≥ 5. Since the definitions of the complement
require n ≥ 6, the result follows. �

Since t(Gs) > t(Gt) we need only consider graphs of type Gs when mak-
ing our comparison to multigraph augmentations. However, those graphs
are exactly the Gs graphs that were compared to our Gm in the previ-
ous section. Since Gm was proven to be t-optimal when compared to Gs

previously, we have the following result.

Lemma 4.6 Let G ∈ Γ(n, m) with n even such that G consists of K1, n−2
2
∪

K1, n−2
2
∪ e where e is the edge joining the central nodes of the two stars.

Then for n ≥ 8 the t-optimal 2-edge augmentation of G is a multigraph.

For completeness we turn now to the n odd case. By now the methods used
to derive the results are familiar, and we state the result without proof.

Theorem 4.7 Let G ∈ Γ(n, m) with n odd such that G = K1, n−1
2
∪K1, n−3

2
∪

e, where e is the edge joining the central nodes of the stars. Then for n ≥ 11
the t-optimal 2-edge augmentation of G is a multigraph.

In summary we state the following result for 2-edge augmentations.

Theorem 4.8 Let G be the graph on n vertices whose complement G =
K1,s∪K1,t∪e where s = bn−2

2 c and t = dn−2
2 e and e is the edge joining the

central nodes of the stars. Then if n = 8 or n ≥ 10, the t-optimal 2-edge
augmentation of G is a multigraph.

For the base graph pictured in Figure Two, it is possible to show that the
multigraph 2-edge augmentation Gm discussed in this section is in fact also
uniformly more reliable than any of the available simple 2-edge augmenta-
tions. That analysis can be done computationally along the lines of Section
Two and is omitted here. The result is as follows.

Theorem 4.9 Let G ∈ Γ(8, 21) be the graph pictured in Figure Two, and
let Gm be the multigraph 2-edge augmentation previously discussed for this
case. Then for any simple 2-edge augmentation Gs, we have Rel(Gs) <
Rel(Gm) for all p ∈ (0, 1).
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Thus for the graph shown the 2-edge multigraph augmentation is uniformly
more reliable than any simple augmentation.

5 Larger Edge Augmentations

We now demonstrate that, for any k-edge augmentation considered, there
exist an infinite number of simple graphs G for which t(G + ke) > t(Gs),
where Gs is any simple edge augmentation.

Theorem 5.1 Let G be a graph with an even number of nodes whose com-
plement consists of two identical stars of n−2

2 leaves each, and let e denote
the edge connecting the central nodes of the two stars. Let Gs denote any
simple 2k edge augmentation of G and let Gm = G+2ke. Then if n > 8k+6,
we have t(Gm) > t(Gs).

Proof: By a previous theorem we need only consider the simple case in
which Gs consists of two identical stars with n−2

2 − k leaves each. We are
thus comparing the two quantities

t(Gs) =
1
4
n2k(n− 1)n−4−2k(n + 2k)2

t(Gm) =
1
4
n2(n− 1)n−4 + 2k(n− 1)n−3

=
1
4

(n− 1)n−4(n2 + 8kn− 8k)

A little algebra reveals that we have t(Gm) > t(Gs) if and only if(
1− 1

n

)2k

> 1− 4kn− 12k

n2 + 8kn− 8k

It is apparent that both fractions involved have magnitudes smaller than
one, and thus taking logs of both sides and expanding into power series is
justified. Doing so gives us the equivalent condition

−2k

∞∑
i=1

1
i

(
1
n

)i

> −
∞∑

i=1

1
i

(
4kn− 12k

n2 + 8kn− 8k

)i

or
∞∑

i=1

1
i

(
1
n

)i

<

∞∑
i=1

(2k)i−1

i

(
2n− 6

n2 + 8kn− 8k

)i

This condition is obviously satisfied if

2n− 6
n2 + 8kn− 8k

>
1
n
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for all n, k chosen. Cross-multiplying and combining terms yields

n2 − (8k + 6)n + 8k > 0

a quadratic in n. Thus the condition above holds if n is larger than the
largest root of the quadratic. This root is positive and smaller than 8k + 6,
and our result follows. �

For the odd case a similar result holds.

Theorem 5.2 Let G be a graph on an odd number of nodes whose com-
plement consists of two stars of n−1

2 leaves and n−3
2 leaves each, and let e

denote the edge connecting the central nodes of the two stars. Let Gs denote
any simple 2k + 1 edge augmentation of G and let Gm = G + (2k + 1)e.
Then if n > 10k + 10, we have t(Gm) > t(Gs).

Proof: By a previous theorem we need only consider the simple case in
which Gs consists of two identical stars with n−3

2 − k leaves each. We are
thus comparing the two quantities

t(Gs) =
1
4
n2k+1(n− 1)n−5−2k(n + 2k + 1)2

t(Gm) =
1
4

(n + 1)(n− 1)n−3 + (2k + 1)(n− 1)n−3

=
1
4

(n− 1)n−3(n2 + (8k + 4)n− 8k − 5)

A little algebra reveals that we have t(Gm) > t(Gs) if and only if(
1− 1

n

)2k+1

> 1− (4k + 2)n− (4k2 + 12k + 6)
n2 + (8k + 4)n− 8k − 5

It is apparent that both fractions involved have magnitudes smaller than
one, and thus taking logs of both sides and expanding into power series is
justified. Doing so gives us the equivalent condition

−(2k + 1)
∞∑

i=1

1
i

(
1
n

)i

> −
∞∑

i=1

1
i

(
(4k + 2)n− (4k2 + 12k + 6)

n2 + (8k + 4)n− 8k − 5

)i

or
∞∑

i=1

1
i

(
1
n

)i

<

∞∑
i=1

(2k + 1)i−1

i

(
2n− (2k + 5 + 1

2k+1 )
n2 + (8k + 4)n− 8k − 5

)i

This condition is obviously satisfied if

2n− (2k + 5 + 1
2k+1 )

n2 + (8k + 4)n− 8k − 5
>

1
n
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for all n, k chosen. Cross-multiplying and combining terms yields

n2 −
(

10k + 9 +
1

2k + 1

)
n + 8k + 5 > 0

a quadratic in n. Thus the condition above holds if n is larger than the
largest root of the quadratic. This root is positive and smaller than the
largest root of

n2 − (10k + 10)n + 8k + 5 > 0

The largest root of the above quadratic is smaller than 10k + 10, and the
result follows. �

In particular we have shown the following to be true.

Theorem 5.3 For any k > 0, there exists an infinite number of graphs
G with an e ∈ G such that t(G + ke) > t(Gs) for any simple k-edge aug-
mentation Gs. In particular, the t-optimal k-edge augmentation of G is a
multigraph, and any k-edge uniformly most reliable augmentation for G, if
it exists, must be a multigraph.

It is worth noting that the above does not prove that t-optimal augmenta-
tions (or most reliable augmentations) will necessarily result in arbitrarily
large edge multiplicities. In fact, in the cases we have examined compu-
tationally, all t-optimal augmentations have resulted in at most an edge
multiplicity of 2.

6 Consequences and Future Directions

The vast majority of research on network synthesis and augmentation prob-
lems begins with the explicit assumption that the optimal graph topologies
are simple. The graphs demonstrated here show that this assumption de-
pends heavily on the initial network considered. Moreover, when taken
together with the result of Myrvold, et al. [?], which demonstrated a
multigraph which is optimal over planar networks, these results suggest
that multigraphs may have more to offer than previously thought in the
area of network optimization.

The graphs discussed here also impact future efforts to prove or disprove the
Multigraph Conjecture for the network synthesis problem. Any attempted
proof of the claim that all t-optimal networks are simple cannot be based
on the intuitively appealing process of moving multiedge(s) to some other
simple location. For the multigraph augmentations of the graphs of Figures
One and Two, there are no better simple locations.
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Lastly, we state two conjectures and a problem based on features of the
graphs seen.

Conjecture For any k > 0, there exist an infinite number of graphs G
such that a uniformly most reliable k-edge augmentation of G exists and is
a multigraph.

Conjecture For m + k ≤
(
n
2

)
, no t-optimal (or uniformly most reliable)

augmentation results in an edge with multiplicity 3 or greater.

Recall that t-optimal synthesis graphs are t-optimal over all possible G ∈
Γ(n, m), i.e. there are no subgraph conditions as in the augmentation
problem.

Problem Let P be a property of t-optimal synthesis graphs. Determine
kn,m such that, if k ≥ kn,m, any t-optimal k-edge augmentation of a simple
graph G ∈ Γ(n, m) must have P as well.

Since all optimal k-edge augmentations for k =
(
n
2

)
−m must result in the

complete graph Kn, the challenge is to determine if a smaller value holds
for kn,m and if so, what the bound is. For example, for the base graph
G ∈ Γ(8, 22) pictured in Figure One, any t-optimal edge augmentation of
2 or more edges results in a simple graph. Is this true for all G ∈ Γ(8, 22)?
If so, then k8,22 = 2 for the property of being simple.
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