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Abstract

We consider sufficient conditions for a degree sequence π to be forcibly k-factor
graphical. We note that previous work on degrees and factors has focused
primarily on finding conditions for a degree sequence to be potentially k-factor
graphical.

We first give a theorem for π to be forcibly 1-factor graphical and, more gen-
erally, forcibly graphical with deficiency at most β ≥ 0. These theorems are
equal in strength to Chvátal’s well-known hamiltonian theorem, i.e., the best
monotone degree condition for hamiltonicity. We then give an equally strong
theorem for π to be forcibly 2-factor graphical. Unfortunately, the number
of nonredundant conditions that must be checked increases significantly in
moving from k = 1 to k = 2, and we conjecture that the number of nonre-
dundant conditions in a best monotone theorem for a k-factor will increase
superpolynomially in k.
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This suggests the desirability of finding a theorem for π to be forcibly k-factor
graphical whose algorithmic complexity grows more slowly. In the final sec-
tion, we present such a theorem for any k ≥ 2, based on Tutte’s well-known
factor theorem. While this theorem is not best monotone, we show that it is
nevertheless tight in a precise way, and give examples illustrating this tight-
ness.

Keywords: k-factor of a graph, degree sequence, best monotone condition

AMS Subject Classification: 05C70, 05C07

1 Introduction

We consider only undirected graphs without loops or multiple edges. Our terminol-
ogy and notation will be standard except as indicated, and a good reference for any
undefined terms or notation is [4].

A degree sequence of a graph on n vertices is any sequence π = (d1, d2, . . . , dn) con-
sisting of the vertex degrees of the graph. In contrast to [4], we will usually assume
the sequence is in nondecreasing order. We generally use the standard abbreviated
notation for degree sequences, e.g., (4, 4, 4, 4, 4, 5, 5) will be denoted 4552. A se-
quence of integers π = (d1, d2, . . . , dn) is called graphical if there exists a graph G
having π as one of its degree sequences, in which case we call G a realization of π.
If π = (d1, . . . , dn) and π′ = (d′1, . . . , d

′
n) are two integer sequences, we say π′ ma-

jorizes π, denoted π′ ≥ π, if d′j ≥ dj for 1 ≤ j ≤ n. If P is a graphical property
(e.g., k-connected, hamiltonian), we call a graphical degree sequence forcibly (re-
spectively, potentially) P graphical if every (respectively, some) realization of π has
property P .

Historically, the degree sequence of a graph has been used to provide sufficient
conditions for a graph to have a certain property, such as k-connected or hamiltonian.
Sufficient conditions for a degree sequence to be forcibly hamiltonian were given by
several authors, culminating in the following theorem of Chvátal [6] in 1972.

Theorem 1.1 ([6]). Let π = (d1 ≤ · · · ≤ dn) be a graphical degree sequence, with
n ≥ 3. If di ≤ i < 1

2
n implies dn−i ≥ n− i, then π is forcibly hamiltonian graphical.

Unlike its predecessors, Chvátal’s theorem has the property that if it does not guar-
antee that a graphical degree sequence π is forcibly hamiltonian graphical, then π is
majorized by some degree sequence π′ which has a nonhamiltonian realization. As
we’ll see, this fact implies that Chvátal’s theorem is the strongest of an entire class
of theorems giving sufficient conditions for π to be forcibly hamiltonian graphical.

A factor of a graph G is a spanning subgraph of G. A k-factor of G is a factor whose
vertex degrees are identically k. For a recent survey on graph factors, see [14]. In the
present paper, we develop sufficient conditions for a degree sequence to be forcibly
k-factor graphical. We note that previous work relating degrees and the existence of
factors has focused primarily on sufficient conditions for π to be potentially k-factor
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graphical. The following obvious necessary condition was conjectured to be sufficient
by Rao and Rao [15], and this was later proved by Kundu [11].

Theorem 1.2 ([11]). The sequence π = (d1, d2, . . . , dn) is potentially k-factor graph-
ical if and only if

(1) (d1, d2, . . . , dn) is graphical, and

(2) (d1 − k, d2 − k, . . . , dn − k) is graphical.

Kleitman and Wang [9] later gave a proof of Theorem 1.2 that yielded a polynomial
algorithm constructing a realization G of π with a k-factor. Lovász [13] subsequently
gave a very short proof of Theorem 1.2 for the special case k = 1, and Chen [5]
produced a short proof for all k ≥ 1.

In Section 2, we give a theorem for π to be forcibly graphical with deficiency at
most β (i.e., have a matching missing at most β vertices), and show this theorem
is strongest in the same sense as Chvátal’s hamiltonian degree theorem. The case
β = 0 gives the strongest result for π to be forcibly 1-factor graphical. In Section 3,
we give the strongest theorem, in the same sense as Chvátal, for π to be forcibly
2-factor graphical. But the increase in the number of nonredundant conditions
which must be checked as we move from a 1-factor to a 2-factor is notable, and
we conjecture the number of such conditions in the best monotone theorem for π
to be forcibly k-factor graphical increases superpolynomially in k. Thus it would
be desirable to find a theorem for π to be forcibly k-factor graphical in which the
number of nonredundant conditions grows in a more reasonable way. In Section
4, we give such a theorem for k ≥ 2, based on Tutte’s well-known factor theorem.
While our theorem is not best monotone, it is nevertheless tight in a precise way,
and we provide examples to illustrate this tightness.

We conclude this introduction with some concepts which are needed in the se-
quel. Let P denote a graph property (e.g., hamiltonian, contains a k-factor, etc.)
such that whenever a spanning subgraph of G has P , so does G. A function
f : {Graphical Degree Sequences} → {0, 1} such that f(π) = 1 implies π is forcibly
P graphical, and f(π) = 0 implies nothing in this regard, is called a forcibly P func-
tion. Such a function is called monotone if π′ ≥ π and f(π) = 1 implies f(π′) = 1,
and weakly optimal if f(π) = 0 implies there exists a graphical sequence π′ ≥ π such
that π′ has a realization G′ without P . A forcibly P function which is both mono-
tone and weakly optimal is the best monotone forcibly P function, in the following
sense.

Theorem 1.3. If f ,f0 are monotone, forcibly P functions, and f0 is weakly op-
timal, then f0(π) ≥ f(π), for every graphical sequence π.

Proof: Suppose to the contrary that for some graphical sequence π we have 1 =
f(π) > f0(π) = 0. Since f0 is weakly optimal, there exists a graphical sequence
π′ ≥ π such that π′ has a realization G′ without P , and thus f(π′) = 0. But π′ ≥ π,
f(π) = 1 and f(π′) = 0 imply f cannot be monotone, a contradiction. �
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A theorem T giving a sufficient condition for π to be forcibly P corresponds to the
forcibly P function fT given by: fT (π) = 1 if and only if T implies π is forcibly P .
It is well-known that if T is Theorem 1.1 (Chvátal’s theorem), then fT is both
monotone and weakly optimal, and thus the best monotone forcibly hamiltonian
function in the above sense. In the sequel, we will simplify the formally correct ‘fT
is monotone, etc.’ to ‘T is monotone, etc..’

2 Best monotone condition for a 1-factor

In this section we present best monotone conditions for a graph to have a large
matching. These results were first obtained by Las Vergnas [12], and can also be
obtained from results in Bondy and Chvátal [3]. For the convenience of the reader,
we include the statement of the results and short proofs below.

The deficiency of G, denoted def(G), is the number of vertices unmatched under
a maximum matching in G. In particular, G contains a 1-factor if and only if
def(G) = 0.

We first give a best monotone condition for π to be forcibly graphical with deficiency
at most β, for any β ≥ 0.

Theorem 2.1 ([3, 12]). Let G have degree sequence π = (d1 ≤ · · · ≤ dn), and let
0 ≤ β ≤ n with β ≡ n (mod 2). If

di+1 ≤ i− β < 1
2
(n− β − 1) =⇒ dn+β−i ≥ n− i− 1,

then def(G) ≤ β.

The condition in Theorem 2.1 is clearly monotone. Furthermore, if π does not
satisfy the condition for some i ≥ β, then π is majorized by π′ = (i − β)i+1

(n − i − 2)n−2i+β−1(n − 1)i−β. But π′ is realizable as Ki−β + (Ki+1 ∪ Kn−2i+β−1),
which has deficiency β + 2. Thus Theorem 2.1 is weakly optimal, and the condition
of the theorem is best monotone.

Proof of Theorem 2.1: Suppose π satisfies the condition in Theorem 2.1, but
def(G) ≥ β + 2. (The condition β ≡ n (mod 2) guarantees that def(G) − β is
always even.) Define G′

.
= Kβ+1 + G, with degree sequence π′ = (d1 + β + 1, . . . ,

dn + β + 1, ((n− 1) + β + 1)β+1). Note that the number of vertices of G′ is odd.

Suppose G′ has a Hamilton cycle. Then, by taking alternating edges on that cycle,
there is a matching covering all vertices of G′ except one vertex, and we can choose
that missed vertex freely. So choose a matching covering all but one of the β + 1
new vertices. Removing the other β new vertices as well, the remaining edges form
a matching covering all but at most β vertices from G, a contradiction.

Hence G′ cannot have a Hamilton cycle, and π′ cannot satisfy the condition in
Theorem 1.1. Thus there is some i ≥ β + 1 such that

di + β + 1 ≤ i < 1
2
(n+ β + 1) and dn+β+1−i + β + 1 ≤ (n+ β + 1)− i− 1.
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Subtracting β + 1 throughout this equation gives

di ≤ i− β − 1 < 1
2
(n− β − 1) and dn+β+1−i ≤ n− i− 1.

Replacing i by j + 1 we get

dj+1 ≤ j − β < 1
2
(n− β − 1) and dn+β−j ≤ n− j − 2.

Thus π fails to satisfy the condition in Theorem 2.1, a contradiction. �

As an important special case, we give the best monotone condition for a graph to
have a 1-factor.

Corollary 2.2 ([3, 12]). Let G have degree sequence π = (d1 ≤ · · · ≤ dn), with
n ≥ 2 and n even. If

di+1 ≤ i < 1
2
n =⇒ dn−i ≥ n− i− 1, (1)

then G contains a 1-factor.

We note in passing that (1) is Chvátal’s best monotone condition for G to have a
hamiltonian path [6].

3 Best monotone condition for a 2-factor

We now give a best monotone condition for the existence of a 2-factor. In what
follows we abuse the notation by setting d0 = 0.

Theorem 3.1. Let G have degree sequence π = (d1 ≤ · · · ≤ dn), with n ≥ 3. If

(i) n odd =⇒ d(n+1)/2 ≥ 1
2
(n+ 1);

(ii) n even =⇒ d(n−2)/2 ≥ 1
2
n or d(n+2)/2 ≥ 1

2
(n+ 2);

(iii) di ≤ i and di+1 ≤ i + 1 =⇒ dn−i−1 ≥ n − i − 1 or dn−i ≥ n − i, for
0 ≤ i ≤ 1

2
(n− 2);

(iv) di−1 ≤ i and di+2 ≤ i + 1 =⇒ dn−i−3 ≥ n − i − 2 or dn−i ≥ n − i − 1, for
1 ≤ i ≤ 1

2
(n− 5),

then G contains a 2-factor.

The condition in Theorem 3.1 is easily seen to be monotone. Furthermore, if π
fails to satisfy any of (i) through (iv), then π is majorized by some π′ having a
realization G′ without a 2-factor. In particular, note that

• if (i) fails, then π is majorized by π′ =
(
1
2
(n − 1)

)(n+1)/2
(n − 1)(n−1)/2, having

realization K(n−1)/2 +K(n+1)/2;

• if (ii) fails, then π is majorized by π′ =
(
1
2
(n − 2)

)(n−2)/2(1
2
n
)2

(n − 1)(n−2)/2,

having realization K(n−2)/2 + (K(n−2)/2 ∪K2);
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• if (iii) fails for some i, then π is majorized by π′ = ii(i + 1)1(n − i − 2)n−2i−2

(n− i− 1)1(n− 1)i, having realization Ki + (Ki+1 ∪Kn−2i−1) together with an edge
joining Ki+1 and Kn−2i−1;

• if (iv) fails for some i, then π is majorized by π′ = ii−1(i + 1)3(n − i − 3)n−2i−5

(n − i − 2)3(n − 1)i, having realization Ki + (Ki+2 ∪Kn−2i−2) together with three
independent edges joining Ki+2 and Kn−2i−2.

It is immediate that none of the above realizations contain a 2-factor. Hence, The-
orem 3.1 is weakly optimal, and the condition of the theorem is best monotone.

Proof of Theorem 3.1: Suppose π satisfies (i) through (iv), but G has no
2-factor. We may assume the addition of any missing edge to G creates a 2-factor.
Let v1, . . . , vn be the vertices of G, with respective degrees d1 ≤ · · · ≤ dn, and
assume vj, vk are a nonadjacent pair with j + k as large as possible, and dj ≤ dk.
Then vj must be adjacent to vk+1, vk+2, . . . , vn and so

dj ≥ n− k. (2)

Similarly, vk must be adjacent to vj+1, . . . , vk−1, vk+1, . . . , vn, and so

dk ≥ n− j − 1. (3)

Since G+ (vj, vk) has a 2-factor, G has a spanning subgraph consisting of a path P
joining vj and vk, and t ≥ 0 cycles C1, . . . , Ct, all vertex disjoint.

We may also assume vj, vk and P are chosen such that if v, w are any nonadjacent
vertices with dG(v) = dj and dG(w) = dk, and if P ′ is any (v, w)-path such that
G− V (P ′) has a 2-factor, then |P ′| ≤ |P |. Otherwise, re-index the set of vertices of
degree dj (resp., dk) so that v (resp., w) is given the highest index in the set.

Since G has no 2-factor, we cannot have independent edges between {vj, vk} and
two consecutive vertices on any of the Cµ, 0 ≤ µ ≤ t. Similarly, we cannot have
dP (vj) + dP (vk) ≥ |V (P )|, since otherwise 〈V (P )〉 is hamiltonian and G contains a
2-factor. This means

dCµ(vj) + dCµ(vk) ≤ |V (Cµ)| for 0 ≤ µ ≤ t,

and dP (vj) + dP (vk) ≤ |V (P )| − 1.
(4)

It follows immediately that
dj + dk ≤ n− 1. (5)

We distinguish two cases for dj + dk.

Case 1: dj + dk ≤ n− 2.

Using (3), we obtain

dj ≤ (n− 2)− dk ≤ (n− 2)− (n− j − 1) = j − 1.
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Take i,m so that i = dj = j −m, where m ≥ 1. By Case 1 we have i ≤ 1
2
(n − 2).

Since also di = dj−m ≤ dj = i and di+1 = dj−m+1 ≤ dj = i, condition (iii) implies
dn−(j−m)−1 ≥ n− (j −m)− 1 or dn−(j−m) ≥ n− (j −m). In either case,

dn−(j−m) ≥ n− (j −m)− 1. (6)

Adding dj = j −m to (6), we obtain

dj + dn−j+m ≥ n− 1. (7)

But dj + dk ≤ n− 2 and (7) together give n− j +m > k, hence j + k < n+m. On
the other hand, (2) gives j−m = dj ≥ n− k, hence j + k ≥ n+m, a contradiction.

�

Case 2: dj + dk = n− 1.

In this case we have equality in (5), hence all the inequalities in (4) become equalities.
In particular, this implies that every cycle Cµ, 1 ≤ µ ≤ t, satisfies one of the following
conditions:

(a) Every vertex in Cµ is adjacent to vj (resp., vk), and none are adjacent to vk
(resp., vj), or

(b) |V (Cµ)| is even, and vj, vk are both adjacent to the same alternate vertices
on Cµ.

We call a cycle of type (a) a j-cycle (resp., k-cycle), and a cycle of type (b) a (j, k)-
cycle. Set A =

⋃
j-cycles C V (C), B =

⋃
k-cycles C V (C), and D =

⋃
(j, k)-cycles C V (C),

and let a
.
= |A|, b .= |B|, and c

.
= 1

2
|D|.

Vertices in V (G)− {vj, vk} which are adjacent to both (resp., neither) of vj, vk will
be called large (resp., small) vertices. In particular, the vertices of each (j, k)-cycle
are alternately large and small, and hence there are c small and c large vertices
among the (j, k)-cycles.

By the definitions of a, b, c, noting that a cycle has at least 3 vertices, we have the
following.

Observation 1. We have a = 0 or a ≥ 3, b = 0 or b ≥ 3, and c = 0 or c ≥ 2.

By the choice of vj, vk and P , we also have the following observations.

Observation 2.
(a) If (u, vk) /∈ E(G), then dG(u) ≤ dj; if (u, vj) /∈ E(G), then dG(u) ≤ dk.

(b) A vertex in A has degree at most dj − 1.

(c) A vertex in B has degree at most dk − 1.

(d) A small vertex in D has degree at most dj − 1.

Proof: Part (a) follows directly from the choice of vj, vk as nonadjacent with
dG(vj) + dG(vk) = dj + dk maximal.
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For (b), consider any a ∈ A, with say a
.
= v`. Since (v`, vk) /∈ E(G), we have

` < j by the maximality of j + k, and so dG(a) ≤ dj. If dG(a) = dj, then since
each vertex in A is adjacent to vj, we can combine the path P and the j-cycle Cµ
containing a (leaving the other cycles Cµ alone) into a path P ′ joining a and vk such
that G − V (P ′) has a 2-factor and |P ′| > |P |, contradicting the choice of P . Thus
dG(a) ≤ dj − 1, proving (b).

Parts (c) and (d) follow by a similar arguments. �

Let p
.
= |V (P )|, and let us re-index P as vj = w1, w2, . . . , wp = vk. By the case

assumption, dP (w1) + dP (wp) = p− 1.

Assume first that p = 3. Then dj = a + c + 1 and dk = b + c + 1, so that b ≥ a.
Moreover, n = a+ b+ 2c+ 3 and there are c+ 1 large vertices and c small vertices.

If b ≥ 3, the large vertex w2 is not adjacent to a vertex in A or to a small vertex
in D, or else G contains a 2-factor. Thus w2 has degree at most n− 1− (a+ c), and
by Observations 2(b,c,d), π is majorized by

π1 = (a+ c)a+c(a+ c+ 1)1(b+ c)b(b+ c+ 1)1(n− 1− (a+ c))1(n− 1)c.

Setting i = a+ c, so that 0 ≤ i = a+ c = (n− 3)− (b+ c) ≤ 1
2
(n− 3), π1 becomes

π1 = ii(i+ 1)1(n− i− 3)b(n− i− 2)1(n− i− 1)1(n− 1)c.

Since π1 majorizes π, we have di ≤ i, di+1 ≤ i+ 1, dn−i−1 = dn−(a+c+1) ≤ n− i− 2,
and dn−i = dn−(a+c) ≤ n − i − 1, and π violates condition (iii). Hence b = 0 by
Observation 1, and a fortiori a = 0.

But if a = b = 0, then c = 1
2
(n − 3), n is odd, and by Observation 2(d), π is

majorized by

π2 =
(
1
2
(n− 3)

)(n−3)/2(1
2
(n− 1)

)2
(n− 1)(n−1)/2.

Since π2 majorizes π, we have d(n+1)/2 ≤ 1
2
(n− 1), and π violates condition (i).

Hence we assume p ≥ 4.

We make several further observations regarding the possible adjacencies of vj, vk
into the path P .

Observation 3. For all m, 1 ≤ m ≤ p − 1, we have (w1, wm+1) ∈ E(G) if and
only if (wp, wm) /∈ E(G).

Proof: If (w1, wm+1) ∈ E(G) then, (wp, wm) /∈ E(G), since otherwise 〈V (P )〉 is
hamiltonian andG has a 2-factor. The converse follows since dP (w1)+dP (wp) = p−1.

�

Observation 4. If (w1, wm), (w1, wm+1) ∈ E(G) for some m, 3 ≤ m ≤ p − 3,
then we have (w1, wm+2) ∈ E(G).

Proof: If (w1, wm+2) /∈ E(G), then (wp, wm+1) ∈ E(G) by Observation 3. But
since (w1, wm) ∈ E(G), this means that 〈V (P )〉 would have a 2-factor consisting
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of the cycles (w1, w2, . . . , wm, w1) and (wp, wm+1, wm+2, . . . , wp), and thus G would
have a 2-factor, a contradiction. �

Observation 4 implies that if w1 is adjacent to consecutive vertices wm, wm+1 ∈ V (P )
for some m ≥ 3, then w1 is adjacent to all of the vertices wm, wm+1, . . . , wp−1.

Observation 5. If (w1, wm), (w1, wm−1) /∈ E(G) for some 5 ≤ m ≤ p − 1, then
we have (w1, wm−2) /∈ E(G).

Proof: If (w1, wm) /∈ E(G), then (wp, wm−1) ∈ E(G) by Observation 3. So if
also (w1, wm−2) ∈ E(G), then 〈V (P )〉 would have a 2-factor as in the proof of
Observation 4, leading to the same contradiction. �

Observation 5 implies that if w1 is not adjacent to two consecutive vertices wm−1, wm
on P for some m ≤ p− 1, then w1 is not adjacent to any of w3, . . . , wm−1, wm.

By Observation 3, the adjacencies of w1 into P completely determine the adjacen-
cies of wp into P . But combining Observations 4 and 5, we see that the adjacen-
cies of w1 and wp into P must appear as shown in Figure 1, for some `, r ≥ 0.
In summary, w1 will be adjacent to r ≥ 0 consecutive vertices wp−r, . . . , wp−1
(where wα, . . . , wβ is taken to be empty if α > β), wp will be adjacent to ` ≥
0 consecutive vertices w2, . . . , w`+1, and w1, wp are each adjacent to the vertices
w`+3, w`+5, . . . , wp−r−4, wp−r−2. Note that ` = p − 2 implies r = 0, and r = p − 2
implies ` = 0.

Figure 1: The adjacencies of w1, wp on P .

Counting neighbors of w1 and wp we get their degrees as follows.
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Observation 6.

dj = dG(w1) =


a+ c+ 1, if ` = p− 2, r = 0,

a+ c+ p− 2, if r = p− 2, ` = 0,

a+ c+ r + 1
2
(p− r − `− 1); otherwise;

dk = dG(wp) =


b+ c+ p− 2, if ` = p− 2, r = 0,

b+ c+ 1, if r = p− 2, ` = 0,

b+ c+ `+ 1
2
(p− r − `− 1); otherwise.

We next prove some observations to limit the possibilities for (a, b) and (`, r).

Observation 7. If (w1, wp−1) ∈ E(G) (resp., (w2, wp) ∈ E(G)), then we have
b = 0 (resp., a = 0).

Proof: If b 6= 0, there exists a k-cycle C
.
= (x1, x2, . . . , xs, x1). But if also

(w1, wp−1) ∈ E(G), then (w1, w2, . . . , wp−1, w1) and (wp, x1, . . . , xs, wp) would be a
2-factor in 〈V (C)∪V (P )〉, implying a 2-factor in G. The proof that (w2, wp) ∈ E(G)
implies a = 0 is symmetric. �

From Observation 6, we have

0 ≤ dk − dj = b− a+


p− 3, if ` = p− 2, r = 0,

3− p, if r = p− 2, ` = 0,

`− r, otherwise.

(8)

From this, we obtain

Observation 8. ` ≥ r.

Proof: Suppose first r 6= p − 2. If r > ` ≥ 0, then b > a ≥ 0 since b + ` ≥ a + r
by (8). But r > 0 implies (w1, wp−1) ∈ E(G), and thus b = 0 by Observation 7, a
contradiction.

Suppose then r = p − 2 ≥ 2. Then b > a ≥ 0, since b ≥ a + p − 3 by (8). Since
r > 0, we have the same contradiction as in the previous paragraph. �

Observation 9. If r ≥ 1, then ` ≤ 1.

Proof: Else we have (w1, wp−1), (wp, w2), (wp, w3) ∈ E(G), and (w1, w2, wp, w3, . . . ,
wp−1, w1) would be a hamiltonian cycle in 〈V (P )〉. Thus G would have a 2-factor,
a contradiction. �

Observations 8 and 9 together limit the possibilities for (`, r) to (1, 1) and (`, 0)
with 0 ≤ ` ≤ p − 2. We also cannot have (`, r) = (p − 3, 0), since wp is always
adjacent to wp−1, and so we would have ` = p − 2 in that case. And we cannot
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have (`, r) = (p− 4, 0), since then p− r − `− 1 is odd, violating Observation 6. To
complete the proof of Theorem 3.1, we will deal with the remaining possibilities in
a number of cases, and show that all of them lead to a contradiction of one or more
of conditions (i) through (iv).

Before doing so, let us define the spanning subgraph H of G by letting E(H) consist
of the edges in the cycles Cµ, 0 ≤ µ ≤ t, or in the path P , together with the edges
incident to w1 or wp. Note that the edges incident to w1 or wp completely determine
the large or small vertices in G. In the proofs of the cases below, any adjacency
beyond those indicated would create an edge e such that H + e, and a fortiori G,
contains a 2-factor.

Case 2.1: (`, r) = (1, 1).

Since (w1, wp−1), (w2, wp) ∈ E(G), we have a = b = 0, by Observation 7. Using
Observation 6 this means that dj = dk = 1

2
(n−1), and hence n is odd. Additionally,

there are c + 1
2
(p − 3) = 1

2
(n − 3) small vertices. Each of these small vertices has

degree at most dj by Observation 2 (a), and so π is majorized by

π3 =
(
1
2
(n− 1)

)(n+1)/2
(n− 1)(n−1)/2.

But π3 (a fortiori π) violates condition (i). �

Case 2.2: (`, r) = (0, 0).

By Observation 6, dj = a + c + 1
2
(p − 1) and dk = b + c + 1

2
(p − 1), so that b ≥ a.

Also, there are c+ 1
2
(p− 3) large and c+ 1

2
(p− 5) small vertices.

• By Observation 2 (b,c), each vertex in A (resp., B) has degree at most dj − 1 =
a+ c+ 1

2
(p− 3) (resp., dk − 1 = b+ c+ 1

2
(p− 3)).

• Each small vertex is adjacent to at most the large vertices (otherwise G contains
a 2-factor), and so each small vertex has degree at most c+ 1

2
(p− 3).

• The vertex w2 (resp., wp−1) is adjacent to at most the large vertices and w1

(resp., wp) (otherwise G contains a 2-factor), and so w2, wp−1 each have degree at
most c+ 1

2
(p− 1).

Thus π is majorized by

π4 =
(
c+ 1

2
(p− 3)

)c+(p−5)/2(
c+ 1

2
(p− 1)

)2(
a+ c+ 1

2
(p− 3)

)a(
a+ c+ 1

2
(p− 1)

)1(
b+ c+ 1

2
(p− 3)

)b(
b+ c+ 1

2
(p− 1)

)1
(n− 1)c+(p−3)/2.

Setting i = a + c + 1
2
(p − 1), so that 2 ≤ i = 1

2
(n − (b − a) − 1) ≤ 1

2
(n − 1), the

sequence π4 becomes

π4 = (i− a− 1)i−a−2(i− a)2(i− 1)ai1(n− i− 2)n−2i+a−1(n− i− 1)1(n− 1)i−a−1.

If 2 ≤ i ≤ 1
2
(n − 2), then since π4 majorizes π, we have di ≤ i, di+1 ≤ i, dn−i−1 ≤

n− i− 2, and dn−i ≤ n− i− 2, and π violates condition (iii).
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If i = 1
2
(n− 1), then n is odd, and π4 reduces to

π′4 =
(
1
2
(n− 3)− a

)(n−5)/2−a(1
2
(n− 1)− a

)2(1
2
(n− 3)

)2a(1
2
(n− 1)

)2
(n− 1)(n−3)/2−a.

Since π′4 majorizes π, we have d(n+1)/2 ≤ 1
2
(n − 1), and π violates condition (i).

�

Case 2.3: (`, r) = (1, 0)

By Observation 7, a = 0, and thus by Observation 6, dj = c + 1
2
(p − 2) and dk =

b+ c+ 1
2
p. Also, there are c+ 1

2
(p− 2) large and c+ 1

2
(p− 4) small vertices. If p = 4

then ` = 2, a contradiction, and hence p ≥ 6.

• By Observation 2 (c), each vertex in B has degree at most dk−1 = b+c+ 1
2
(p−2).

• Each small vertex is adjacent to at most the large vertices, and so each small
vertex has degree at most c+ 1

2
(p− 2).

• The vertex wp−1 is adjacent to at most wp and the large vertices, and so wp−1
has degree at most c+ 1

2
p.

Thus π is majorized by

π5 =
(
c+ 1

2
(p− 2)

)c+(p−2)/2(
c+ 1

2
p
)1(

b+ c+ 1
2
(p− 2)

)b(
b+ c+ 1

2
p
)1

(n− 1)c+(p−2)/2.

Setting i = c+ 1
2
(p− 2), so that 2 ≤ i = 1

2
(n− b− 2) ≤ 1

2
(n− 2), π5 becomes

π5 = ii(i+ 1)1(n− i− 2)n−2i−2(n− i− 1)1(n− 1)i.

If 2 ≤ i ≤ 1
2
(n − 3), then since π5 majorizes π, we have di ≤ i, di+1 ≤ i + 1,

dn−i−1 ≤ n− i− 2, and dn−i ≤ n− i− 1, and π violates condition (iii).

If i = 1
2
(n− 2), then n is even, and π5 reduces to

π′5 =
(
1
2
n− 1

)n/2−1(1
2
n
)2

(n− 1)n/2−1.

Since π′5 majorizes π, we have dn/2−1 ≤ 1
2
n − 1 and dn/2+1 ≤ 1

2
n, and π violates

condition (ii). �

Case 2.4: (`, r) = (`, 0), where 2 ≤ ` ≤ p− 5

We have a = 0 by Observation 7, and p − ` ≥ 5 by Case 2.4. By Observation 6,
dj = c + 1

2
(p − ` − 1) and dk = b + c + ` + 1

2
(p − ` − 1). Moreover, there are

c+ 1
2
(p− `− 1) large vertices including w2, and c+ 1

2
(p− `− 3) small vertices.

• By Observation 2 (c), each vertex in B has degree at most dk − 1 = b + c + ` +
1
2
(p− `− 3).

• Each small vertex other than w`+2 is adjacent to at most the large vertices except
w2, and so each small vertex other than w`+2 has degree at most c+ 1

2
(p− `− 3).

• The vertex w`+2 is not adjacent to wp, and so by Observation 2 (a), w`+2 has
degree at most dj = c+ 1

2
(p− `− 1).
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• The vertex wp−1 is adjacent to at most wp and the large vertices except w2, and
so wp−1 has degree at most c+ 1

2
(p− `− 1).

• Each wm, 3 ≤ m ≤ `, is adjacent to at most wp, the large vertices, the vertices
in B, and {w3, . . . , w`+1} − {wm}. Hence each such wm has degree at most b + c +
`+ 1

2
(p− `− 3).

• The vertex w2 is adjacent to at most w1, wp, the other large vertices, the vertices
in B, and {w3, . . . , w`+1}. Hence w2 has degree at most b+ c+ `+ 1

2
(p− `− 1).

• The vertex w`+1 is not adjacent to w1, and so by Observation 2 (a), vertex w`+1

has degree at most dk = b+ c+ `+ 1
2
(p− `− 1).

Thus π is majorized by

π6 =
(
c+ 1

2
(p− `− 3)

)c+(p−`−5)/2(
c+ 1

2
(p− `− 1)

)3(
b+ c+ `+ 1

2
(p− `− 3)

)b+`−2(
b+ c+ `+ 1

2
(p− `− 1)

)3
(n− 1)c+(p−`−3)/2.

Setting i = c − 1 + 1
2
(p − ` − 1), so that 1 ≤ i = 1

2
(n − b − ` − 3) ≤ 1

2
(n − 5), π6

becomes
π6 = ii−1(i+ 1)3(i+ b+ `)b+`−2(i+ b+ `+ 1)3(n− 1)i.

Since π6 majorizes π, we have di−1 ≤ i, di+2 ≤ i+ 1, dn−i−3 ≤ i+ b+ ` = n− i− 3,
and dn−i ≤ i+ b+ `+ 1 = n− i− 2, and thus π violates condition (iv). �

Case 2.5: (`, r) = (p− 2, 0)

We have a = 0, by Observation 7. By Observation 6, we then have dj = c + 1 and
dk = b+c+p−2. If d1 ≤ 1, then condition (iii) with i = 0 implies dn−1 ≥ n−1, which
means there are at least 2 vertices adjacent to all other vertices, a contradiction.
Hence c+ 1 = dj ≥ d1 ≥ 2, and so c ≥ 2 by Observation 1. Finally, there are c+ 1
large vertices including w2, and c small vertices.

• By Observation 2 (a), the vertices in B have degree at most dk = b+ c+ p− 2.

• By Observation 2 (d), the small vertices in D have degree at most dj − 1 = c.

• The vertex w2 is not adjacent to the small vertices in D, and so w2 has degree
at most n− 1− c = b+ c+ p− 1.

• The vertices w3, . . . , wp−1 have degree at most dk = b + c + p − 2 by Observa-
tion 2 (a), since none of them are adjacent to w1 = vj.

Thus π is majorized by

π7 = cc(c+ 1)1(b+ c+ p− 2)b+p−2(b+ c+ p− 1)1(n− 1)c.

Setting i = c, so that 2 ≤ c = i = 1
2
(n− b− p) ≤ 1

2
(n− 4), π7 becomes

π7 = ii(i+ 1)1(n− i− 2)n−2i−2(n− i− 1)1(n− 1)i.

Since π7 majorizes π, we have di ≤ i, di+1 ≤ i + 1, dn−i−1 ≤ n − i − 2, and
dn−i ≤ n− i− 1, and π violates condition (iii). �

The proof of Theorem 3.1 is complete. �
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4 Sufficient condition for the existence of a

k-factor, k ≥ 2

The increase in complexity of Theorem 3.1 (k = 2) compared to Corollay 2.2 (k = 1)
suggests that the best monotone condition for π to be forcibly k-factor graphical
may become unwieldy as k increases. Indeed, we make the following conjecture.

Conjecture 4.1. The best monotone condition for a degree sequence π of length
n to be forcibly k-factor graphical requires checking at least f(k) nonredundant con-
ditions (where each condition may require O(n) checks), where f(k) grows super-
polynomially in k.

Kriesell [10] has verified such rapidly increasing complexity for the best monotone
condition for π to be forcibly k-edge-connected. Indeed, Kriesell has shown such a
condition entails checking at least p(k) nonredundant conditions, where p(k) denotes

the number of partitions of k. It is well-known [8] that p(k) ∼ eπ
√

2k/3

4
√

3k
.

The above conjecture suggests the desirability of obtaining a monotone condition
for π to be forcibly k-factor graphical which does not require checking a superpoly-
nomial number of conditions. Our goal in this section is to prove such a condition
for k ≥ 2. Since our condition will require Tutte’s Factor Theorem [2, 16], we begin
with some needed background.

Belck [2] and Tutte [16] characterized graphs G that do not contain a k-factor. For
disjoint subsets A,B of V (G), let C = V (G) − A − B. We call a component H of
〈C〉 odd if k|H|+ e(H,B) is odd. The number of odd components of 〈C〉 is denoted
by oddk(A,B). Define

Θk(A,B)
.
= k|A|+

∑
u∈B

dG−A(u)− k|B| − oddk(A,B).

Theorem 4.2. Let G be a graph on n vertices and k ≥ 1.

(a) [16]. For any disjoint A,B ⊆ V (G), Θk(A,B) ≡ kn (mod 2);

(b) [2, 16]. The graph G does not contain a k-factor if and only if Θk(A,B) < 0,
for some disjoint A,B ⊆ V (G).

We call any disjoint pair A,B ⊆ V (G) for which Θk(A,B) < 0 a k-Tutte-pair for G.
Note that if kn is even, then A,B is a k-Tutte-pair for G if and only if

k|A|+
∑
u∈B

dG−A(u) ≤ k|B|+ oddk(A,B)− 2.

Moreover, for all u ∈ B we have dG(u) ≤ dG−A(u)+|A|, so
∑
u∈B

dG(u) ≤
∑
u∈B

dG−A(u)+

|A||B|. Thus for each k-Tutte-pair A,B we have∑
u∈B

dG(u) ≤ k|B|+ |A||B| − k|A|+ oddk(A,B)− 2. (9)
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Our main result in this section is the following condition for a graphical degree
sequence π to be forcibly k-factor graphical. The condition will guarantee that no
k-Tutte-pair can exist, and is readily seen to be monotone. We again set d0 = 0.

Theorem 4.3. Let π = (d1 ≤ · · · ≤ dn) be a graphical degree sequence, and let
k ≥ 2 be an integer such that kn is even. Suppose

(i) d1 ≥ k;

(ii) for all a, b, q with 0 ≤ a < 1
2
n, 0 ≤ b ≤ n− a and max{0, a(k − b) + 2} ≤ q ≤

n − a − b so that
b∑
i=1

di ≤ kb + ab − ka + q − 2, the following holds: Setting

r = a+ k+ q− 2 and s = n−max{0, b− k+ 1} −max{0, q− 1} − 1, we have

(∗) r ≤ s and db ≤ r, or r > s and dn−a−b ≤ s =⇒ dn−a ≥ max{r, s}+ 1.

Then π is forcibly k-factor graphical.

Proof : Let n and k ≥ 2 be integers with kn even. Suppose π satisfies (i) and (ii)
in the theorem, but has a realization G with no k-factor. This means that G has at
least one k-Tutte-pair.

Following [7], a k-Tutte-pair A,B is minimal if either B = ∅, or Θk(A,B
′) ≥ 0 for

all proper subsets B′ ⊂ B. We then have

Lemma 4.4 ([7]). Let k ≥ 2, and let A,B be a minimal k-Tutte-pair for a graph G
with no k-factor. If B 6= ∅, then ∆(〈B〉) ≤ k − 2.

Next let A,B be a k-Tutte-pair for G with A as large as possible, and A,B minimal.
Also, set C = V (G)− A−B. We establish some further observations.

Lemma 4.5.
(a) |A| < 1

2
n.

(b) For all v ∈ C, e(v,B) ≤ min{k − 1, |B|}.
(c) For all u ∈ B, dG(u) ≤ |A|+ k + oddk(A,B)− 2.

Proof: Suppose |A| ≥ 1
2
n, so that |A| ≥ |B|+ |C|. Then we have

Θk(A,B) = k|A|+
∑
u∈B

dG−A(u)− k|B| − oddk(A,B) ≥ k(|A| − |B|)− oddk(A,B)

≥ k|C| − oddk(A,B) > |C| − oddk(A,B) ≥ 0,

which contradicts that A,B is a k-Tutte-pair.

For (b), clearly e(v,B) ≤ |B|. If e(v,B) ≥ k for some v ∈ C, move v to A, and
consider the change in each term in Θk(A,B):

k|A|︸︷︷︸
increases by k

+
∑
u∈B

dG−A(u)︸ ︷︷ ︸
decreases by e(v,B) ≥ k

− k|B| − oddk(A,B)︸ ︷︷ ︸
decreases by ≤ 1

.
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So by Theorem 4.2 (a), A ∪ {v}, B is also a k-Tutte-pair in G, contradicting the
assumption that A,B is a k-Tutte-pair with A as large as possible.

And for (c), suppose that dG(t) ≥ |A| + k + oddk(A,B) − 1 for some t ∈ B. This
implies that dG−A(t) ≥ k + oddk(A,B) − 1. Now move t to C, and consider the
change in each term in Θk(A,B):

k|A|+
∑
u∈B

dG−A(u)︸ ︷︷ ︸
decreases by

dG−A(t)≥ k+oddk(A,B)−1

− k|B|︸︷︷︸
decreases by k

− oddk(A,B)︸ ︷︷ ︸
decreases by ≤ oddk(A,B)

.

So by Theorem 4.2 (a), A,B − {t} is also a k-Tutte-pair for G, contradicting the
minimality of A,B. �

We introduce some further notation. Set a
.
= |A|, b .

= |B|, c .
= |C| = n − a − b,

q
.
= oddk(A,B), r

.
= a+k+ q−2, and s

.
= n−max{0, b−k+1}−max{0, q−1}−1.

Using this notation, (9) can be written as∑
u∈B

dG(u) ≤ kb+ ab− ka+ q − 2. (10)

By Lemma 4.5 (a) we have 0 ≤ a < 1
2
n. Since B is disjoint from A, we trivially have

0 ≤ b ≤ n−a. And since the number of odd components of C is at most the number
of elements of C, we are also guaranteed that q ≤ n − a − b. Finally, since for all
vertices v we have dG(v) ≥ d1 ≥ k, we get from (10) that q ≥

∑
u∈B

dG(u)− kb− ab+

ka + 2 ≥ kb− kb− ab + ka + 2 = a(k − b) + 2, hence q ≥ max{0, a(k − b) + 2}. It
follows that a, b, q satisfy the conditions in Theorem 4.3 (ii).

Next, by Lemma 4.5 (c) we have that

for all u ∈ B: dG(u) ≤ r. (11)

If C 6= ∅ (i.e., if a+ b < n), let m be the size of a largest component of 〈C〉. Then,
using Lemma 4.5 (b), for all v ∈ C we have

dG(v) = e(v,A) + e(v,B) + e(v, C) ≤ |A|+ min{k − 1, |B|}+m− 1

= a+ b−max{0, b− k + 1}+m− 1.

Clearly m ≤ |C| = n− a− b. If q ≥ 1, then m ≤ n− a− b− (q− 1), since C has at
least q components. Thus m ≤ n− a− b−max{0, q − 1}. Combining this all gives

for all v ∈ C: dG(v) ≤ n−max{0, b− k + 1} −max{0, q − 1} − 1 = s. (12)

Next notice that we cannot have n − a = 0, because otherwise B = C = ∅ and
oddk(A,B) = 0, and (9) becomes 0 ≤ −ka− 2, a contradiction. From (11) and (12)
we see that each of the n − a > 0 vertices in B ∪ C has degree at most max{r, s},
and so dn−a ≤ max{r, s}.
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If r ≤ s, then each of the b vertices in B has degree at most r, and so db ≤ r. This
also holds if b = 0, since we set d0 = 0, and r = a+ k + q − 2 ≥ 0 because k ≥ 2.

If r > s, then each of n − a − b vertices in C has degree at most s by (12), and so
dn−a−b ≤ s. This also holds if n− a− b = 0, since we set d0 = 0 and

s = n−max{0, b− k + 1} −max{0, q − 1} − 1

≥ min{n− 1, n− q, (n− b) + (k − 2), (n− q − b) + (k − 1)} ≥ 0,

since k ≥ 2 and q ≤ n− a− b.
So we always have r ≤ s and db ≤ r, or r > s and dn−a−b ≤ s, but also dn−a ≤
max{r, s}, contradicting assumption (ii) (∗) in Theorem 4.3. �

How good is Theorem 4.3? We know it is not best monotone for k = 2. For
example, the sequence π = 4463104 satisfies Theorem 3.1, but not Theorem 4.3 (it
violates (∗) when a = 4, b = 5 and q = 2, with r = 6 and s = 5). And it is very
unlikely the theorem is best monotone for any k ≥ 3. Nevertheless, Theorem 4.3
appears to be quite tight. In particular, we conjecture for each k ≥ 2 there exists a
π = (d1 ≤ · · · ≤ dn) such that

• (π, k) satisfies Theorem 4.3, and

• there exists a degree sequence π′, with π′ ≤ π and
n∑
i=1

d′i =
( n∑
i=1

di

)
− 2, such that

π′ is not forcibly k-factor graphical.

Informally, for each k ≥ 2, there exists a pair (π, π′) with π′ ‘just below’ π such that
Theorem 4.3 detects that π is forcibly k-factor graphical, while π′ is not forcibly
k-factor graphical.

For example, let n ≡ 2 (mod 4) and n ≥ 6, and consider the sequences πn
.
=(

1
2
n
)n/2+1

(n− 1)n/2−1 and π′n
.
=
(
1
2
n− 1

)2(1
2
n
)n/2−1

(n− 1)n/2−1. It is easy to verify
that the unique realization of π′n fails to have a k-factor, for k = 1

4
(n + 2) ≥ 2. On

the other hand, we have programmed Theorem 4.3, and verified that πn satisfies
Theorem 4.3 with k = 1

4
(n + 2) for all values of n up to n = 2502. We conjecture

that (πn,
1
4
(n+ 2)) satisfies Theorem 4.3 for all n ≥ 6 with n ≡ 2 (mod 4).

There is another sense in which Theorem 4.3 seems quite good. A graph G is t-tough
if t ·ω(G) ≤ |X|, for every X ⊆ V (G) with ω(G−X) > 1, where ω(G−X) denotes
the number of components of G − X. In [1], the authors give the following best
monotone condition for π to be forcibly t-tough, for t ≥ 1.

Theorem 4.6 ([1]). Let t ≥ 1, and let π = (d1 ≤ · · · ≤ dn) be graphical with
n > (t+ 1)dte/t. If

dbi/tc ≤ i =⇒ dn−i ≥ n− bi/tc, for t ≤ i < tn/(t+ 1),

then π is forcibly t-tough graphical.

We also have the following classical result.
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Theorem 4.7 ([7]). Let k ≥ 1, and let G be a graph on n ≥ k + 1 vertices with kn
even. If G is k-tough, then G has a k-factor.

Based on checking many examples with our program, we conjecture that there is a
relation between Theorems 4.6 and 4.3, which somewhat mirrors Theorem 4.7.

Conjecture 4.8. Let π = (d1 ≤ · · · ≤ dn) be graphical, and let k ≥ 2 be an integer
with n > k+ 1 and kn even. If π is forcibly k-tough graphical by Theorem 4.6, then
π is forcibly k-factor graphical by Theorem 4.3.
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