Degree Sequences and the Existence of k-Factors

D. BaUER
Department of Mathematical Sciences
Stevens Institute of Technology
Hoboken, NJ 07030, U.S.A.

J. van den Heuvel

Department of Mathematics
London School of Economics
Houghton Street, London WC2A 2AE, U.K.

H.J. Broersma*
Department of Computer Science
Durham University
South Road, Durham DH1 3LE, U.K.

N. Kahl
Department of Mathematics
and Computer Science
Seton Hall University
South Orange, NJ 07079, U.S.A.

E. Schmeichel

Department of Mathematics
San José State University
San José, CA 95192, U.S.A.

Abstract

We consider sufficient conditions for a degree sequence π to be forcibly k-factor graphical. We note that previous work on degrees and factors has focused primarily on finding conditions for a degree sequence to be potentially k-factor graphical. We first give a theorem for π to be forcibly 1-factor graphical and, more generally, forcibly graphical with deficiency at most $\beta \geq 0$. These theorems are equal in strength to Chvátal's well-known hamiltonian theorem, i.e., the best monotone degree condition for hamiltonicity. We then give an equally strong theorem for π to be forcibly 2 -factor graphical. Unfortunately, the number of nonredundant conditions that must be checked increases significantly in moving from $k=1$ to $k=2$, and we conjecture that the number of nonredundant conditions in a best monotone theorem for a k-factor will increase superpolynomially in k.

[^0]This suggests the desirability of finding a theorem for π to be forcibly k-factor graphical whose algorithmic complexity grows more slowly. In the final section, we present such a theorem for any $k \geq 2$, based on Tutte's well-known factor theorem. While this theorem is not best monotone, we show that it is nevertheless tight in a precise way, and give examples illustrating this tightness.

Keywords: k-factor of a graph, degree sequence, best monotone condition
AMS Subject Classification: 05C70, 05C07

1 Introduction

We consider only undirected graphs without loops or multiple edges. Our terminology and notation will be standard except as indicated, and a good reference for any undefined terms or notation is [4].
A degree sequence of a graph on n vertices is any sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ consisting of the vertex degrees of the graph. In contrast to [4], we will usually assume the sequence is in nondecreasing order. We generally use the standard abbreviated notation for degree sequences, e.g., $(4,4,4,4,4,5,5)$ will be denoted $4^{5} 5^{2}$. A sequence of integers $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is called graphical if there exists a graph G having π as one of its degree sequences, in which case we call G a realization of π. If $\pi=\left(d_{1}, \ldots, d_{n}\right)$ and $\pi^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ are two integer sequences, we say $\pi^{\prime} m a$ jorizes π, denoted $\pi^{\prime} \geq \pi$, if $d_{j}^{\prime} \geq d_{j}$ for $1 \leq j \leq n$. If P is a graphical property (e.g., k-connected, hamiltonian), we call a graphical degree sequence forcibly (respectively, potentially) P graphical if every (respectively, some) realization of π has property P.
Historically, the degree sequence of a graph has been used to provide sufficient conditions for a graph to have a certain property, such as k-connected or hamiltonian. Sufficient conditions for a degree sequence to be forcibly hamiltonian were given by several authors, culminating in the following theorem of Chvátal [6] in 1972.

Theorem 1.1 ([6]). Let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical degree sequence, with $n \geq 3$. If $d_{i} \leq i<\frac{1}{2} n$ implies $d_{n-i} \geq n-i$, then π is forcibly hamiltonian graphical.

Unlike its predecessors, Chvátal's theorem has the property that if it does not guarantee that a graphical degree sequence π is forcibly hamiltonian graphical, then π is majorized by some degree sequence π^{\prime} which has a nonhamiltonian realization. As we'll see, this fact implies that Chvátal's theorem is the strongest of an entire class of theorems giving sufficient conditions for π to be forcibly hamiltonian graphical.
A factor of a graph G is a spanning subgraph of G. A k-factor of G is a factor whose vertex degrees are identically k. For a recent survey on graph factors, see [14]. In the present paper, we develop sufficient conditions for a degree sequence to be forcibly k-factor graphical. We note that previous work relating degrees and the existence of factors has focused primarily on sufficient conditions for π to be potentially k-factor
graphical. The following obvious necessary condition was conjectured to be sufficient by Rao and Rao [15], and this was later proved by Kundu [11].

Theorem 1.2 ([11]). The sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is potentially k-factor graphical if and only if

$$
\begin{align*}
& \left(d_{1}, d_{2}, \ldots, d_{n}\right) \text { is graphical, and } \\
& \left(d_{1}-k, d_{2}-k, \ldots, d_{n}-k\right) \text { is graphical. } \tag{2}
\end{align*}
$$

Kleitman and Wang [9] later gave a proof of Theorem 1.2 that yielded a polynomial algorithm constructing a realization G of π with a k-factor. Lovász [13] subsequently gave a very short proof of Theorem 1.2 for the special case $k=1$, and Chen [5] produced a short proof for all $k \geq 1$.
In Section 2, we give a theorem for π to be forcibly graphical with deficiency at most β (i.e., have a matching missing at most β vertices), and show this theorem is strongest in the same sense as Chvátal's hamiltonian degree theorem. The case $\beta=0$ gives the strongest result for π to be forcibly 1-factor graphical. In Section 3, we give the strongest theorem, in the same sense as Chvátal, for π to be forcibly 2 -factor graphical. But the increase in the number of nonredundant conditions which must be checked as we move from a 1 -factor to a 2 -factor is notable, and we conjecture the number of such conditions in the best monotone theorem for π to be forcibly k-factor graphical increases superpolynomially in k. Thus it would be desirable to find a theorem for π to be forcibly k-factor graphical in which the number of nonredundant conditions grows in a more reasonable way. In Section 4 , we give such a theorem for $k \geq 2$, based on Tutte's well-known factor theorem. While our theorem is not best monotone, it is nevertheless tight in a precise way, and we provide examples to illustrate this tightness.
We conclude this introduction with some concepts which are needed in the sequel. Let P denote a graph property (e.g., hamiltonian, contains a k-factor, etc.) such that whenever a spanning subgraph of G has P, so does G. A function $f:\{$ Graphical Degree Sequences $\} \rightarrow\{0,1\}$ such that $f(\pi)=1$ implies π is forcibly P graphical, and $f(\pi)=0$ implies nothing in this regard, is called a forcibly P function. Such a function is called monotone if $\pi^{\prime} \geq \pi$ and $f(\pi)=1$ implies $f\left(\pi^{\prime}\right)=1$, and weakly optimal if $f(\pi)=0$ implies there exists a graphical sequence $\pi^{\prime} \geq \pi$ such that π^{\prime} has a realization G^{\prime} without P. A forcibly P function which is both monotone and weakly optimal is the best monotone forcibly P function, in the following sense.

Theorem 1.3. If f, f_{0} are monotone, forcibly P functions, and f_{0} is weakly optimal, then $f_{0}(\pi) \geq f(\pi)$, for every graphical sequence π.

Proof: Suppose to the contrary that for some graphical sequence π we have $1=$ $f(\pi)>f_{0}(\pi)=0$. Since f_{0} is weakly optimal, there exists a graphical sequence $\pi^{\prime} \geq \pi$ such that π^{\prime} has a realization G^{\prime} without P, and thus $f\left(\pi^{\prime}\right)=0$. But $\pi^{\prime} \geq \pi$, $f(\pi)=1$ and $f\left(\pi^{\prime}\right)=0$ imply f cannot be monotone, a contradiction.

A theorem T giving a sufficient condition for π to be forcibly P corresponds to the forcibly P function f_{T} given by: $f_{T}(\pi)=1$ if and only if T implies π is forcibly P. It is well-known that if T is Theorem 1.1 (Chvátal's theorem), then f_{T} is both monotone and weakly optimal, and thus the best monotone forcibly hamiltonian function in the above sense. In the sequel, we will simplify the formally correct ' f_{T} is monotone, etc.' to ' T is monotone, etc..'

2 Best monotone condition for a 1-factor

In this section we present best monotone conditions for a graph to have a large matching. These results were first obtained by Las Vergnas [12], and can also be obtained from results in Bondy and Chvátal [3]. For the convenience of the reader, we include the statement of the results and short proofs below.
The deficiency of G, denoted $\operatorname{def}(G)$, is the number of vertices unmatched under a maximum matching in G. In particular, G contains a 1 -factor if and only if $\operatorname{def}(G)=0$.
We first give a best monotone condition for π to be forcibly graphical with deficiency at most β, for any $\beta \geq 0$.

Theorem 2.1 ([3, 12]). Let G have degree sequence $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$, and let $0 \leq \beta \leq n$ with $\beta \equiv n(\bmod 2)$. If

$$
d_{i+1} \leq i-\beta<\frac{1}{2}(n-\beta-1) \Longrightarrow d_{n+\beta-i} \geq n-i-1
$$

then $\operatorname{def}(G) \leq \beta$.
The condition in Theorem 2.1 is clearly monotone. Furthermore, if π does not satisfy the condition for some $i \geq \beta$, then π is majorized by $\pi^{\prime}=(i-\beta)^{i+1}$ $(n-i-2)^{n-2 i+\beta-1}(n-1)^{i-\beta}$. But π^{\prime} is realizable as $K_{i-\beta}+\left(\overline{K_{i+1}} \cup K_{n-2 i+\beta-1}\right)$, which has deficiency $\beta+2$. Thus Theorem 2.1 is weakly optimal, and the condition of the theorem is best monotone.

Proof of Theorem 2.1: Suppose π satisfies the condition in Theorem 2.1, but $\operatorname{def}(G) \geq \beta+2$. (The condition $\beta \equiv n(\bmod 2)$ guarantees that $\operatorname{def}(G)-\beta$ is always even.) Define $G^{\prime} \doteq K_{\beta+1}+G$, with degree sequence $\pi^{\prime}=\left(d_{1}+\beta+1, \ldots\right.$, $\left.d_{n}+\beta+1,((n-1)+\beta+1)^{\beta+1}\right)$. Note that the number of vertices of G^{\prime} is odd.
Suppose G^{\prime} has a Hamilton cycle. Then, by taking alternating edges on that cycle, there is a matching covering all vertices of G^{\prime} except one vertex, and we can choose that missed vertex freely. So choose a matching covering all but one of the $\beta+1$ new vertices. Removing the other β new vertices as well, the remaining edges form a matching covering all but at most β vertices from G, a contradiction.
Hence G^{\prime} cannot have a Hamilton cycle, and π^{\prime} cannot satisfy the condition in Theorem 1.1. Thus there is some $i \geq \beta+1$ such that

$$
d_{i}+\beta+1 \leq i<\frac{1}{2}(n+\beta+1) \quad \text { and } \quad d_{n+\beta+1-i}+\beta+1 \leq(n+\beta+1)-i-1
$$

Subtracting $\beta+1$ throughout this equation gives

$$
d_{i} \leq i-\beta-1<\frac{1}{2}(n-\beta-1) \quad \text { and } \quad d_{n+\beta+1-i} \leq n-i-1 .
$$

Replacing i by $j+1$ we get

$$
d_{j+1} \leq j-\beta<\frac{1}{2}(n-\beta-1) \quad \text { and } \quad d_{n+\beta-j} \leq n-j-2 .
$$

Thus π fails to satisfy the condition in Theorem 2.1, a contradiction.

As an important special case, we give the best monotone condition for a graph to have a 1 -factor.

Corollary 2.2 ([3, 12]). Let G have degree sequence $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$, with $n \geq 2$ and n even. If

$$
\begin{equation*}
d_{i+1} \leq i<\frac{1}{2} n \Longrightarrow d_{n-i} \geq n-i-1, \tag{1}
\end{equation*}
$$

then G contains a 1-factor.
We note in passing that (1) is Chvátal's best monotone condition for G to have a hamiltonian path [6].

3 Best monotone condition for a 2-factor

We now give a best monotone condition for the existence of a 2 -factor. In what follows we abuse the notation by setting $d_{0}=0$.

Theorem 3.1. Let G have degree sequence $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$, with $n \geq 3$. If
(i) n odd $\Longrightarrow d_{(n+1) / 2} \geq \frac{1}{2}(n+1)$;
(ii) n even $\Longrightarrow d_{(n-2) / 2} \geq \frac{1}{2} n$ or $d_{(n+2) / 2} \geq \frac{1}{2}(n+2)$;
(iii) $d_{i} \leq i$ and $d_{i+1} \leq i+1 \Longrightarrow d_{n-i-1} \geq n-i-1$ or $d_{n-i} \geq n-i$, for $0 \leq i \leq \frac{1}{2}(n-2)$;
(iv) $d_{i-1} \leq i$ and $d_{i+2} \leq i+1 \Longrightarrow d_{n-i-3} \geq n-i-2$ or $d_{n-i} \geq n-i-1$, for $1 \leq i \leq \frac{1}{2}(n-5)$,
then G contains a 2-factor.
The condition in Theorem 3.1 is easily seen to be monotone. Furthermore, if π fails to satisfy any of (i) through (iv), then π is majorized by some π^{\prime} having a realization G^{\prime} without a 2 -factor. In particular, note that

- if (i) fails, then π is majorized by $\pi^{\prime}=\left(\frac{1}{2}(n-1)\right)^{(n+1) / 2}(n-1)^{(n-1) / 2}$, having realization $K_{(n-1) / 2}+\overline{K_{(n+1) / 2}}$;
- if (ii) fails, then π is majorized by $\pi^{\prime}=\left(\frac{1}{2}(n-2)\right)^{(n-2) / 2}\left(\frac{1}{2} n\right)^{2}(n-1)^{(n-2) / 2}$, having realization $K_{(n-2) / 2}+\left(\overline{K_{(n-2) / 2}} \cup K_{2}\right)$;
- if (iii) fails for some i, then π is majorized by $\pi^{\prime}=i^{i}(i+1)^{1}(n-i-2)^{n-2 i-2}$ $(n-i-1)^{1}(n-1)^{i}$, having realization $K_{i}+\left(\overline{K_{i+1}} \cup K_{n-2 i-1}\right)$ together with an edge joining $\overline{K_{i+1}}$ and $K_{n-2 i-1}$;
- if (iv) fails for some i, then π is majorized by $\pi^{\prime}=i^{i-1}(i+1)^{3}(n-i-3)^{n-2 i-5}$ $(n-i-2)^{3}(n-1)^{i}$, having realization $K_{i}+\left(\overline{K_{i+2}} \cup K_{n-2 i-2}\right)$ together with three independent edges joining $\overline{K_{i+2}}$ and $K_{n-2 i-2}$.
It is immediate that none of the above realizations contain a 2 -factor. Hence, Theorem 3.1 is weakly optimal, and the condition of the theorem is best monotone.

Proof of Theorem 3.1: Suppose π satisfies (i) through (iv), but G has no 2 -factor. We may assume the addition of any missing edge to G creates a 2 -factor. Let v_{1}, \ldots, v_{n} be the vertices of G, with respective degrees $d_{1} \leq \cdots \leq d_{n}$, and assume v_{j}, v_{k} are a nonadjacent pair with $j+k$ as large as possible, and $d_{j} \leq d_{k}$. Then v_{j} must be adjacent to $v_{k+1}, v_{k+2}, \ldots, v_{n}$ and so

$$
\begin{equation*}
d_{j} \geq n-k \tag{2}
\end{equation*}
$$

Similarly, v_{k} must be adjacent to $v_{j+1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{n}$, and so

$$
\begin{equation*}
d_{k} \geq n-j-1 \tag{3}
\end{equation*}
$$

Since $G+\left(v_{j}, v_{k}\right)$ has a 2-factor, G has a spanning subgraph consisting of a path P joining v_{j} and v_{k}, and $t \geq 0$ cycles C_{1}, \ldots, C_{t}, all vertex disjoint.
We may also assume v_{j}, v_{k} and P are chosen such that if v, w are any nonadjacent vertices with $d_{G}(v)=d_{j}$ and $d_{G}(w)=d_{k}$, and if P^{\prime} is any (v, w)-path such that $G-V\left(P^{\prime}\right)$ has a 2-factor, then $\left|P^{\prime}\right| \leq|P|$. Otherwise, re-index the set of vertices of degree d_{j} (resp., d_{k}) so that v (resp., w) is given the highest index in the set.
Since G has no 2 -factor, we cannot have independent edges between $\left\{v_{j}, v_{k}\right\}$ and two consecutive vertices on any of the $C_{\mu}, 0 \leq \mu \leq t$. Similarly, we cannot have $d_{P}\left(v_{j}\right)+d_{P}\left(v_{k}\right) \geq|V(P)|$, since otherwise $\langle V(P)\rangle$ is hamiltonian and G contains a 2-factor. This means

$$
\begin{gather*}
d_{C_{\mu}}\left(v_{j}\right)+d_{C_{\mu}}\left(v_{k}\right) \leq\left|V\left(C_{\mu}\right)\right| \quad \text { for } 0 \leq \mu \leq t \\
\quad \text { and } \quad d_{P}\left(v_{j}\right)+d_{P}\left(v_{k}\right) \leq|V(P)|-1 \tag{4}
\end{gather*}
$$

It follows immediately that

$$
\begin{equation*}
d_{j}+d_{k} \leq n-1 \tag{5}
\end{equation*}
$$

We distinguish two cases for $d_{j}+d_{k}$.
Case 1: $\quad d_{j}+d_{k} \leq n-2$.
Using (3), we obtain

$$
d_{j} \leq(n-2)-d_{k} \leq(n-2)-(n-j-1)=j-1
$$

Take i, m so that $i=d_{j}=j-m$, where $m \geq 1$. By Case 1 we have $i \leq \frac{1}{2}(n-2)$. Since also $d_{i}=d_{j-m} \leq d_{j}=i$ and $d_{i+1}=d_{j-m+1} \leq d_{j}=i$, condition (iii) implies $d_{n-(j-m)-1} \geq n-(j-m)-1$ or $d_{n-(j-m)} \geq n-(j-m)$. In either case,

$$
\begin{equation*}
d_{n-(j-m)} \geq n-(j-m)-1 . \tag{6}
\end{equation*}
$$

Adding $d_{j}=j-m$ to (6), we obtain

$$
\begin{equation*}
d_{j}+d_{n-j+m} \geq n-1 \tag{7}
\end{equation*}
$$

But $d_{j}+d_{k} \leq n-2$ and (7) together give $n-j+m>k$, hence $j+k<n+m$. On the other hand, (2) gives $j-m=d_{j} \geq n-k$, hence $j+k \geq n+m$, a contradiction.

Case 2: $\quad d_{j}+d_{k}=n-1$.
In this case we have equality in (5), hence all the inequalities in (4) become equalities. In particular, this implies that every cycle $C_{\mu}, 1 \leq \mu \leq t$, satisfies one of the following conditions:
(a) Every vertex in C_{μ} is adjacent to v_{j} (resp., v_{k}), and none are adjacent to v_{k} (resp., v_{j}), or
(b) $\left|V\left(C_{\mu}\right)\right|$ is even, and v_{j}, v_{k} are both adjacent to the same alternate vertices on C_{μ}.
We call a cycle of type (a) a j-cycle (resp., k-cycle), and a cycle of type (b) a (j, k) cycle. Set $A=\bigcup_{j \text {-cycles } C} V(C), B=\bigcup_{k \text {-cycles } C} V(C)$, and $D=\bigcup_{(j, k) \text {-cycles } C} V(C)$, and let $a \doteq|A|, b \doteq|B|$, and $c \doteq \frac{1}{2}|D|$.
Vertices in $V(G)-\left\{v_{j}, v_{k}\right\}$ which are adjacent to both (resp., neither) of v_{j}, v_{k} will be called large (resp., small) vertices. In particular, the vertices of each (j, k)-cycle are alternately large and small, and hence there are c small and c large vertices among the (j, k)-cycles.
By the definitions of a, b, c, noting that a cycle has at least 3 vertices, we have the following.

Observation 1. We have $a=0$ or $a \geq 3, b=0$ or $b \geq 3$, and $c=0$ or $c \geq 2$.
By the choice of v_{j}, v_{k} and P, we also have the following observations.

Observation 2.

(a) If $\left(u, v_{k}\right) \notin E(G)$, then $d_{G}(u) \leq d_{j}$; if $\left(u, v_{j}\right) \notin E(G)$, then $d_{G}(u) \leq d_{k}$.
(b) A vertex in A has degree at most $d_{j}-1$.
(c) A vertex in B has degree at most $d_{k}-1$.
(d) A small vertex in D has degree at most $d_{j}-1$.

Proof: Part (a) follows directly from the choice of v_{j}, v_{k} as nonadjacent with $d_{G}\left(v_{j}\right)+d_{G}\left(v_{k}\right)=d_{j}+d_{k}$ maximal.

For (b), consider any $a \in A$, with say $a \doteq v_{\ell}$. Since $\left(v_{\ell}, v_{k}\right) \notin E(G)$, we have $\ell<j$ by the maximality of $j+k$, and so $d_{G}(a) \leq d_{j}$. If $d_{G}(a)=d_{j}$, then since each vertex in A is adjacent to v_{j}, we can combine the path P and the j-cycle C_{μ} containing a (leaving the other cycles C_{μ} alone) into a path P^{\prime} joining a and v_{k} such that $G-V\left(P^{\prime}\right)$ has a 2-factor and $\left|P^{\prime}\right|>|P|$, contradicting the choice of P. Thus $d_{G}(a) \leq d_{j}-1$, proving (b).
Parts (c) and (d) follow by a similar arguments.
Let $p \doteq|V(P)|$, and let us re-index P as $v_{j}=w_{1}, w_{2}, \ldots, w_{p}=v_{k}$. By the case assumption, $d_{P}\left(w_{1}\right)+d_{P}\left(w_{p}\right)=p-1$.
Assume first that $p=3$. Then $d_{j}=a+c+1$ and $d_{k}=b+c+1$, so that $b \geq a$. Moreover, $n=a+b+2 c+3$ and there are $c+1$ large vertices and c small vertices.

If $b \geq 3$, the large vertex w_{2} is not adjacent to a vertex in A or to a small vertex in D, or else G contains a 2 -factor. Thus w_{2} has degree at most $n-1-(a+c)$, and by Observations 2(b,c,d), π is majorized by

$$
\pi_{1}=(a+c)^{a+c}(a+c+1)^{1}(b+c)^{b}(b+c+1)^{1}(n-1-(a+c))^{1}(n-1)^{c} .
$$

Setting $i=a+c$, so that $0 \leq i=a+c=(n-3)-(b+c) \leq \frac{1}{2}(n-3), \pi_{1}$ becomes

$$
\pi_{1}=i^{i}(i+1)^{1}(n-i-3)^{b}(n-i-2)^{1}(n-i-1)^{1}(n-1)^{c} .
$$

Since π_{1} majorizes π, we have $d_{i} \leq i, d_{i+1} \leq i+1, d_{n-i-1}=d_{n-(a+c+1)} \leq n-i-2$, and $d_{n-i}=d_{n-(a+c)} \leq n-i-1$, and π violates condition (iii). Hence $b=0$ by Observation 1, and a fortiori $a=0$.
But if $a=b=0$, then $c=\frac{1}{2}(n-3), n$ is odd, and by Observation $2(\mathrm{~d}), \pi$ is majorized by

$$
\pi_{2}=\left(\frac{1}{2}(n-3)\right)^{(n-3) / 2}\left(\frac{1}{2}(n-1)\right)^{2}(n-1)^{(n-1) / 2} .
$$

Since π_{2} majorizes π, we have $d_{(n+1) / 2} \leq \frac{1}{2}(n-1)$, and π violates condition (i).
Hence we assume $p \geq 4$.
We make several further observations regarding the possible adjacencies of v_{j}, v_{k} into the path P.

Observation 3. For all $m, 1 \leq m \leq p-1$, we have $\left(w_{1}, w_{m+1}\right) \in E(G)$ if and only if $\left(w_{p}, w_{m}\right) \notin E(G)$.

Proof: If $\left(w_{1}, w_{m+1}\right) \in E(G)$ then, $\left(w_{p}, w_{m}\right) \notin E(G)$, since otherwise $\langle V(P)\rangle$ is hamiltonian and G has a 2-factor. The converse follows since $d_{P}\left(w_{1}\right)+d_{P}\left(w_{p}\right)=p-1$.

Observation 4. If $\left(w_{1}, w_{m}\right),\left(w_{1}, w_{m+1}\right) \in E(G)$ for some $m, 3 \leq m \leq p-3$, then we have $\left(w_{1}, w_{m+2}\right) \in E(G)$.

Proof: If $\left(w_{1}, w_{m+2}\right) \notin E(G)$, then $\left(w_{p}, w_{m+1}\right) \in E(G)$ by Observation 3. But since $\left(w_{1}, w_{m}\right) \in E(G)$, this means that $\langle V(P)\rangle$ would have a 2-factor consisting
of the cycles $\left(w_{1}, w_{2}, \ldots, w_{m}, w_{1}\right)$ and $\left(w_{p}, w_{m+1}, w_{m+2}, \ldots, w_{p}\right)$, and thus G would have a 2 -factor, a contradiction.

Observation 4 implies that if w_{1} is adjacent to consecutive vertices $w_{m}, w_{m+1} \in V(P)$ for some $m \geq 3$, then w_{1} is adjacent to all of the vertices $w_{m}, w_{m+1}, \ldots, w_{p-1}$.

Observation 5. If $\left(w_{1}, w_{m}\right),\left(w_{1}, w_{m-1}\right) \notin E(G)$ for some $5 \leq m \leq p-1$, then we have $\left(w_{1}, w_{m-2}\right) \notin E(G)$.

Proof: If $\left(w_{1}, w_{m}\right) \notin E(G)$, then $\left(w_{p}, w_{m-1}\right) \in E(G)$ by Observation 3. So if also $\left(w_{1}, w_{m-2}\right) \in E(G)$, then $\langle V(P)\rangle$ would have a 2 -factor as in the proof of Observation 4, leading to the same contradiction.

Observation 5 implies that if w_{1} is not adjacent to two consecutive vertices w_{m-1}, w_{m} on P for some $m \leq p-1$, then w_{1} is not adjacent to any of $w_{3}, \ldots, w_{m-1}, w_{m}$.

By Observation 3, the adjacencies of w_{1} into P completely determine the adjacencies of w_{p} into P. But combining Observations 4 and 5 , we see that the adjacencies of w_{1} and w_{p} into P must appear as shown in Figure 1, for some $\ell, r \geq 0$. In summary, w_{1} will be adjacent to $r \geq 0$ consecutive vertices w_{p-r}, \ldots, w_{p-1} (where $w_{\alpha}, \ldots, w_{\beta}$ is taken to be empty if $\alpha>\beta$), w_{p} will be adjacent to $\ell \geq$ 0 consecutive vertices $w_{2}, \ldots, w_{\ell+1}$, and w_{1}, w_{p} are each adjacent to the vertices $w_{\ell+3}, w_{\ell+5}, \ldots, w_{p-r-4}, w_{p-r-2}$. Note that $\ell=p-2$ implies $r=0$, and $r=p-2$ implies $\ell=0$.

Figure 1: The adjacencies of w_{1}, w_{p} on P.
Counting neighbors of w_{1} and w_{p} we get their degrees as follows.

Observation 6.

$$
\begin{aligned}
& d_{j}=d_{G}\left(w_{1}\right)= \begin{cases}a+c+1, & \text { if } \ell=p-2, r=0 \\
a+c+p-2, & \text { if } r=p-2, \ell=0 \\
a+c+r+\frac{1}{2}(p-r-\ell-1) ; & \text { otherwise } ;\end{cases} \\
& d_{k}=d_{G}\left(w_{p}\right)= \begin{cases}b+c+p-2, & \text { if } \ell=p-2, r=0 \\
b+c+1, & \text { if } r=p-2, \ell=0 \\
b+c+\ell+\frac{1}{2}(p-r-\ell-1) ; & \text { otherwise }\end{cases}
\end{aligned}
$$

We next prove some observations to limit the possibilities for (a, b) and (ℓ, r).
Observation 7. If $\left(w_{1}, w_{p-1}\right) \in E(G)$ (resp., $\left.\left(w_{2}, w_{p}\right) \in E(G)\right)$, then we have $b=0($ resp., $a=0)$.

Proof: If $b \neq 0$, there exists a k-cycle $C \doteq\left(x_{1}, x_{2}, \ldots, x_{s}, x_{1}\right)$. But if also $\left(w_{1}, w_{p-1}\right) \in E(G)$, then $\left(w_{1}, w_{2}, \ldots, w_{p-1}, w_{1}\right)$ and $\left(w_{p}, x_{1}, \ldots, x_{s}, w_{p}\right)$ would be a 2-factor in $\langle V(C) \cup V(P)\rangle$, implying a 2-factor in G. The proof that $\left(w_{2}, w_{p}\right) \in E(G)$ implies $a=0$ is symmetric.

From Observation 6, we have

$$
0 \leq d_{k}-d_{j}=b-a+ \begin{cases}p-3, & \text { if } \ell=p-2, r=0 \tag{8}\\ 3-p, & \text { if } r=p-2, \ell=0 \\ \ell-r, & \text { otherwise }\end{cases}
$$

From this, we obtain
Observation 8. $\quad \ell \geq r$.
Proof: Suppose first $r \neq p-2$. If $r>\ell \geq 0$, then $b>a \geq 0$ since $b+\ell \geq a+r$ by (8). But $r>0$ implies $\left(w_{1}, w_{p-1}\right) \in E(G)$, and thus $b=0$ by Observation 7, a contradiction.
Suppose then $r=p-2 \geq 2$. Then $b>a \geq 0$, since $b \geq a+p-3$ by (8). Since $r>0$, we have the same contradiction as in the previous paragraph.

Observation 9. If $r \geq 1$, then $\ell \leq 1$.
Proof: Else we have $\left(w_{1}, w_{p-1}\right),\left(w_{p}, w_{2}\right),\left(w_{p}, w_{3}\right) \in E(G)$, and $\left(w_{1}, w_{2}, w_{p}, w_{3}, \ldots\right.$, w_{p-1}, w_{1}) would be a hamiltonian cycle in $\langle V(P)\rangle$. Thus G would have a 2 -factor, a contradiction.

Observations 8 and 9 together limit the possibilities for (ℓ, r) to $(1,1)$ and $(\ell, 0)$ with $0 \leq \ell \leq p-2$. We also cannot have $(\ell, r)=(p-3,0)$, since w_{p} is always adjacent to w_{p-1}, and so we would have $\ell=p-2$ in that case. And we cannot
have $(\ell, r)=(p-4,0)$, since then $p-r-\ell-1$ is odd, violating Observation 6. To complete the proof of Theorem 3.1, we will deal with the remaining possibilities in a number of cases, and show that all of them lead to a contradiction of one or more of conditions (i) through (iv).
Before doing so, let us define the spanning subgraph H of G by letting $E(H)$ consist of the edges in the cycles $C_{\mu}, 0 \leq \mu \leq t$, or in the path P, together with the edges incident to w_{1} or w_{p}. Note that the edges incident to w_{1} or w_{p} completely determine the large or small vertices in G. In the proofs of the cases below, any adjacency beyond those indicated would create an edge e such that $H+e$, and a fortiori G, contains a 2 -factor.

Case 2.1: $\quad(\ell, r)=(1,1)$.
Since $\left(w_{1}, w_{p-1}\right),\left(w_{2}, w_{p}\right) \in E(G)$, we have $a=b=0$, by Observation 7. Using Observation 6 this means that $d_{j}=d_{k}=\frac{1}{2}(n-1)$, and hence n is odd. Additionally, there are $c+\frac{1}{2}(p-3)=\frac{1}{2}(n-3)$ small vertices. Each of these small vertices has degree at most d_{j} by Observation 2 (a), and so π is majorized by

$$
\pi_{3}=\left(\frac{1}{2}(n-1)\right)^{(n+1) / 2}(n-1)^{(n-1) / 2}
$$

But π_{3} (a fortiori π) violates condition (i).
CASE 2.2: $\quad(\ell, r)=(0,0)$.
By Observation $6, d_{j}=a+c+\frac{1}{2}(p-1)$ and $d_{k}=b+c+\frac{1}{2}(p-1)$, so that $b \geq a$. Also, there are $c+\frac{1}{2}(p-3)$ large and $c+\frac{1}{2}(p-5)$ small vertices.

- By Observation $2(\mathrm{~b}, \mathrm{c})$, each vertex in A (resp., B) has degree at most $d_{j}-1=$ $a+c+\frac{1}{2}(p-3)\left(\right.$ resp., $\left.d_{k}-1=b+c+\frac{1}{2}(p-3)\right)$.
- Each small vertex is adjacent to at most the large vertices (otherwise G contains a 2 -factor), and so each small vertex has degree at most $c+\frac{1}{2}(p-3)$.
- The vertex w_{2} (resp., w_{p-1}) is adjacent to at most the large vertices and w_{1} (resp., w_{p}) (otherwise G contains a 2 -factor), and so w_{2}, w_{p-1} each have degree at most $c+\frac{1}{2}(p-1)$.
Thus π is majorized by

$$
\begin{aligned}
\pi_{4}=(c+ & \left.\frac{1}{2}(p-3)\right)^{c+(p-5) / 2}\left(c+\frac{1}{2}(p-1)\right)^{2}\left(a+c+\frac{1}{2}(p-3)\right)^{a} \\
& \quad\left(a+c+\frac{1}{2}(p-1)\right)^{1}\left(b+c+\frac{1}{2}(p-3)\right)^{b}\left(b+c+\frac{1}{2}(p-1)\right)^{1}(n-1)^{c+(p-3) / 2}
\end{aligned}
$$

Setting $i=a+c+\frac{1}{2}(p-1)$, so that $2 \leq i=\frac{1}{2}(n-(b-a)-1) \leq \frac{1}{2}(n-1)$, the sequence π_{4} becomes

$$
\pi_{4}=(i-a-1)^{i-a-2}(i-a)^{2}(i-1)^{a} i^{1}(n-i-2)^{n-2 i+a-1}(n-i-1)^{1}(n-1)^{i-a-1} .
$$

If $2 \leq i \leq \frac{1}{2}(n-2)$, then since π_{4} majorizes π, we have $d_{i} \leq i, d_{i+1} \leq i, d_{n-i-1} \leq$ $n-i-2$, and $d_{n-i} \leq n-i-2$, and π violates condition (iii).

If $i=\frac{1}{2}(n-1)$, then n is odd, and π_{4} reduces to
$\pi_{4}^{\prime}=\left(\frac{1}{2}(n-3)-a\right)^{(n-5) / 2-a}\left(\frac{1}{2}(n-1)-a\right)^{2}\left(\frac{1}{2}(n-3)\right)^{2 a}\left(\frac{1}{2}(n-1)\right)^{2}(n-1)^{(n-3) / 2-a}$.
Since π_{4}^{\prime} majorizes π, we have $d_{(n+1) / 2} \leq \frac{1}{2}(n-1)$, and π violates condition (i).

Case 2.3: $\quad(\ell, r)=(1,0)$
By Observation 7, $a=0$, and thus by Observation 6, $d_{j}=c+\frac{1}{2}(p-2)$ and $d_{k}=$ $b+c+\frac{1}{2} p$. Also, there are $c+\frac{1}{2}(p-2)$ large and $c+\frac{1}{2}(p-4)$ small vertices. If $p=4$ then $\ell=2$, a contradiction, and hence $p \geq 6$.

- By Observation 2 (c), each vertex in B has degree at most $d_{k}-1=b+c+\frac{1}{2}(p-2)$.
- Each small vertex is adjacent to at most the large vertices, and so each small vertex has degree at most $c+\frac{1}{2}(p-2)$.
- The vertex w_{p-1} is adjacent to at most w_{p} and the large vertices, and so w_{p-1} has degree at most $c+\frac{1}{2} p$.
Thus π is majorized by
$\pi_{5}=\left(c+\frac{1}{2}(p-2)\right)^{c+(p-2) / 2}\left(c+\frac{1}{2} p\right)^{1}\left(b+c+\frac{1}{2}(p-2)\right)^{b}\left(b+c+\frac{1}{2} p\right)^{1}(n-1)^{c+(p-2) / 2}$.
Setting $i=c+\frac{1}{2}(p-2)$, so that $2 \leq i=\frac{1}{2}(n-b-2) \leq \frac{1}{2}(n-2), \pi_{5}$ becomes

$$
\pi_{5}=i^{i}(i+1)^{1}(n-i-2)^{n-2 i-2}(n-i-1)^{1}(n-1)^{i} .
$$

If $2 \leq i \leq \frac{1}{2}(n-3)$, then since π_{5} majorizes π, we have $d_{i} \leq i, d_{i+1} \leq i+1$, $d_{n-i-1} \leq n-i-2$, and $d_{n-i} \leq n-i-1$, and π violates condition (iii).
If $i=\frac{1}{2}(n-2)$, then n is even, and π_{5} reduces to

$$
\pi_{5}^{\prime}=\left(\frac{1}{2} n-1\right)^{n / 2-1}\left(\frac{1}{2} n\right)^{2}(n-1)^{n / 2-1} .
$$

Since π_{5}^{\prime} majorizes π, we have $d_{n / 2-1} \leq \frac{1}{2} n-1$ and $d_{n / 2+1} \leq \frac{1}{2} n$, and π violates condition (ii).

CASE 2.4: $\quad(\ell, r)=(\ell, 0)$, where $2 \leq \ell \leq p-5$
We have $a=0$ by Observation 7, and $p-\ell \geq 5$ by Case 2.4. By Observation 6 , $d_{j}=c+\frac{1}{2}(p-\ell-1)$ and $d_{k}=b+c+\ell+\frac{1}{2}(p-\ell-1)$. Moreover, there are $c+\frac{1}{2}(p-\ell-1)$ large vertices including w_{2}, and $c+\frac{1}{2}(p-\ell-3)$ small vertices.

- By Observation 2 (c), each vertex in B has degree at most $d_{k}-1=b+c+\ell+$ $\frac{1}{2}(p-\ell-3)$.
- Each small vertex other than $w_{\ell+2}$ is adjacent to at most the large vertices except w_{2}, and so each small vertex other than $w_{\ell+2}$ has degree at most $c+\frac{1}{2}(p-\ell-3)$.
- The vertex $w_{\ell+2}$ is not adjacent to w_{p}, and so by Observation 2 (a), $w_{\ell+2}$ has degree at most $d_{j}=c+\frac{1}{2}(p-\ell-1)$.
- The vertex w_{p-1} is adjacent to at most w_{p} and the large vertices except w_{2}, and so w_{p-1} has degree at most $c+\frac{1}{2}(p-\ell-1)$.
- Each $w_{m}, 3 \leq m \leq \ell$, is adjacent to at most w_{p}, the large vertices, the vertices in B, and $\left\{w_{3}, \ldots, w_{\ell+1}\right\}-\left\{w_{m}\right\}$. Hence each such w_{m} has degree at most $b+c+$ $\ell+\frac{1}{2}(p-\ell-3)$.
- The vertex w_{2} is adjacent to at most w_{1}, w_{p}, the other large vertices, the vertices in B, and $\left\{w_{3}, \ldots, w_{\ell+1}\right\}$. Hence w_{2} has degree at most $b+c+\ell+\frac{1}{2}(p-\ell-1)$.
- The vertex $w_{\ell+1}$ is not adjacent to w_{1}, and so by Observation 2 (a), vertex $w_{\ell+1}$ has degree at most $d_{k}=b+c+\ell+\frac{1}{2}(p-\ell-1)$.
Thus π is majorized by

$$
\begin{aligned}
& \pi_{6}=\left(c+\frac{1}{2}(p-\ell-3)\right)^{c+(p-\ell-5) / 2}\left(c+\frac{1}{2}(p-\ell-1)\right)^{3} \\
& \left(b+c+\ell+\frac{1}{2}(p-\ell-3)\right)^{b+\ell-2}\left(b+c+\ell+\frac{1}{2}(p-\ell-1)\right)^{3}(n-1)^{c+(p-\ell-3) / 2} .
\end{aligned}
$$

Setting $i=c-1+\frac{1}{2}(p-\ell-1)$, so that $1 \leq i=\frac{1}{2}(n-b-\ell-3) \leq \frac{1}{2}(n-5), \pi_{6}$ becomes

$$
\pi_{6}=i^{i-1}(i+1)^{3}(i+b+\ell)^{b+\ell-2}(i+b+\ell+1)^{3}(n-1)^{i} .
$$

Since π_{6} majorizes π, we have $d_{i-1} \leq i, d_{i+2} \leq i+1, d_{n-i-3} \leq i+b+\ell=n-i-3$, and $d_{n-i} \leq i+b+\ell+1=n-i-2$, and thus π violates condition (iv).

CASE 2.5: $\quad(\ell, r)=(p-2,0)$
We have $a=0$, by Observation 7. By Observation 6, we then have $d_{j}=c+1$ and $d_{k}=b+c+p-2$. If $d_{1} \leq 1$, then condition (iii) with $i=0$ implies $d_{n-1} \geq n-1$, which means there are at least 2 vertices adjacent to all other vertices, a contradiction. Hence $c+1=d_{j} \geq d_{1} \geq 2$, and so $c \geq 2$ by Observation 1. Finally, there are $c+1$ large vertices including w_{2}, and c small vertices.

- By Observation 2 (a), the vertices in B have degree at most $d_{k}=b+c+p-2$.
- By Observation $2(\mathrm{~d})$, the small vertices in D have degree at most $d_{j}-1=c$.
- The vertex w_{2} is not adjacent to the small vertices in D, and so w_{2} has degree at most $n-1-c=b+c+p-1$.
- The vertices w_{3}, \ldots, w_{p-1} have degree at most $d_{k}=b+c+p-2$ by Observation 2 (a), since none of them are adjacent to $w_{1}=v_{j}$.
Thus π is majorized by

$$
\pi_{7}=c^{c}(c+1)^{1}(b+c+p-2)^{b+p-2}(b+c+p-1)^{1}(n-1)^{c} .
$$

Setting $i=c$, so that $2 \leq c=i=\frac{1}{2}(n-b-p) \leq \frac{1}{2}(n-4), \pi_{7}$ becomes

$$
\pi_{7}=i^{i}(i+1)^{1}(n-i-2)^{n-2 i-2}(n-i-1)^{1}(n-1)^{i} .
$$

Since π_{7} majorizes π, we have $d_{i} \leq i, d_{i+1} \leq i+1, d_{n-i-1} \leq n-i-2$, and $d_{n-i} \leq n-i-1$, and π violates condition (iii).

The proof of Theorem 3.1 is complete.

4 Sufficient condition for the existence of a k-factor, $k \geq 2$

The increase in complexity of Theorem $3.1(k=2)$ compared to Corollay $2.2(k=1)$ suggests that the best monotone condition for π to be forcibly k-factor graphical may become unwieldy as k increases. Indeed, we make the following conjecture.

Conjecture 4.1. The best monotone condition for a degree sequence π of length n to be forcibly k-factor graphical requires checking at least $f(k)$ nonredundant conditions (where each condition may require $O(n)$ checks), where $f(k)$ grows superpolynomially in k.

Kriesell [10] has verified such rapidly increasing complexity for the best monotone condition for π to be forcibly k-edge-connected. Indeed, Kriesell has shown such a condition entails checking at least $p(k)$ nonredundant conditions, where $p(k)$ denotes the number of partitions of k. It is well-known [8] that $p(k) \sim \frac{e^{\pi \sqrt{2 k / 3}}}{4 \sqrt{3} k}$.
The above conjecture suggests the desirability of obtaining a monotone condition for π to be forcibly k-factor graphical which does not require checking a superpolynomial number of conditions. Our goal in this section is to prove such a condition for $k \geq 2$. Since our condition will require Tutte's Factor Theorem [2, 16], we begin with some needed background.

Belck [2] and Tutte [16] characterized graphs G that do not contain a k-factor. For disjoint subsets A, B of $V(G)$, let $C=V(G)-A-B$. We call a component H of $\langle C\rangle$ odd if $k|H|+e(H, B)$ is odd. The number of odd components of $\langle C\rangle$ is denoted by $\operatorname{odd}_{k}(A, B)$. Define

$$
\Theta_{k}(A, B) \doteq k|A|+\sum_{u \in B} d_{G-A}(u)-k|B|-o^{\prime} d_{k}(A, B) .
$$

Theorem 4.2. Let G be a graph on n vertices and $k \geq 1$.
(a) [16]. For any disjoint $A, B \subseteq V(G), \Theta_{k}(A, B) \equiv k n(\bmod 2)$;
(b) $[2,16]$. The graph G does not contain a k-factor if and only if $\Theta_{k}(A, B)<0$, for some disjoint $A, B \subseteq V(G)$.

We call any disjoint pair $A, B \subseteq V(G)$ for which $\Theta_{k}(A, B)<0$ a k-Tutte-pair for G. Note that if $k n$ is even, then A, B is a k-Tutte-pair for G if and only if

$$
k|A|+\sum_{u \in B} d_{G-A}(u) \leq k|B|+\operatorname{odd}_{k}(A, B)-2 .
$$

Moreover, for all $u \in B$ we have $d_{G}(u) \leq d_{G-A}(u)+|A|$, so $\sum_{u \in B} d_{G}(u) \leq \sum_{u \in B} d_{G-A}(u)+$ $|A||B|$. Thus for each k-Tutte-pair A, B we have

$$
\begin{equation*}
\sum_{u \in B} d_{G}(u) \leq k|B|+|A||B|-k|A|+\operatorname{odd}_{k}(A, B)-2 \tag{9}
\end{equation*}
$$

Our main result in this section is the following condition for a graphical degree sequence π to be forcibly k-factor graphical. The condition will guarantee that no k-Tutte-pair can exist, and is readily seen to be monotone. We again set $d_{0}=0$.

Theorem 4.3. Let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be a graphical degree sequence, and let $k \geq 2$ be an integer such that $k n$ is even. Suppose
(i) $d_{1} \geq k$;
(ii) for all a, b, q with $0 \leq a<\frac{1}{2} n, 0 \leq b \leq n-a$ and $\max \{0, a(k-b)+2\} \leq q \leq$ $n-a-b$ so that $\sum_{i=1}^{b} d_{i} \leq k b+a b-k a+q-2$, the following holds: Setting $r=a+k+q-2$ and $s=n-\max \{0, b-k+1\}-\max \{0, q-1\}-1$, we have
(*) $\quad r \leq s$ and $d_{b} \leq r$, or $r>s$ and $d_{n-a-b} \leq s \Longrightarrow d_{n-a} \geq \max \{r, s\}+1$.
Then π is forcibly k-factor graphical.
Proof: Let n and $k \geq 2$ be integers with $k n$ even. Suppose π satisfies (i) and (ii) in the theorem, but has a realization G with no k-factor. This means that G has at least one k-Tutte-pair.
Following [7], a k-Tutte-pair A, B is minimal if either $B=\varnothing$, or $\Theta_{k}\left(A, B^{\prime}\right) \geq 0$ for all proper subsets $B^{\prime} \subset B$. We then have

Lemma 4.4 ([7]). Let $k \geq 2$, and let A, B be a minimal k-Tutte-pair for a graph G with no k-factor. If $B \neq \varnothing$, then $\Delta(\langle B\rangle) \leq k-2$.

Next let A, B be a k-Tutte-pair for G with A as large as possible, and A, B minimal. Also, set $C=V(G)-A-B$. We establish some further observations.

Lemma 4.5.

(a) $|A|<\frac{1}{2} n$.
(b) For all $v \in C, e(v, B) \leq \min \{k-1,|B|\}$.
(c) For all $u \in B, d_{G}(u) \leq|A|+k+\operatorname{odd}_{k}(A, B)-2$.

Proof: Suppose $|A| \geq \frac{1}{2} n$, so that $|A| \geq|B|+|C|$. Then we have

$$
\begin{aligned}
\Theta_{k}(A, B) & =k|A|+\sum_{u \in B} d_{G-A}(u)-k|B|-\operatorname{odd}_{k}(A, B) \geq k(|A|-|B|)-\operatorname{odd}_{k}(A, B) \\
& \geq k|C|-\operatorname{odd}_{k}(A, B)>|C|-\operatorname{odd}_{k}(A, B) \geq 0
\end{aligned}
$$

which contradicts that A, B is a k-Tutte-pair.
For (b), clearly $e(v, B) \leq|B|$. If $e(v, B) \geq k$ for some $v \in C$, move v to A, and consider the change in each term in $\Theta_{k}(A, B)$:

$$
\underbrace{k|A|}_{\text {increases by } k}+\underbrace{\sum_{u \in B} d_{G-A}(u)}_{\text {decreases by } e(v, B) \geq k}-k|B|-\underbrace{\operatorname{odd}_{k}(A, B)}_{\text {decreases by } \leq 1} .
$$

So by Theorem $4.2(\mathrm{a}), A \cup\{v\}, B$ is also a k-Tutte-pair in G, contradicting the assumption that A, B is a k-Tutte-pair with A as large as possible.
And for (c), suppose that $d_{G}(t) \geq|A|+k+o d d_{k}(A, B)-1$ for some $t \in B$. This implies that $d_{G-A}(t) \geq k+\operatorname{odd}_{k}(A, B)-1$. Now move t to C, and consider the change in each term in $\Theta_{k}(A, B)$:

$$
k|A|+\underbrace{\sum_{u \in B} d_{G-A}(u)}_{\substack{\text { decreases by } \\ d_{G-A}(t) \geq k+o d d_{k}(A, B)-1}}-\underbrace{k|B|}_{\text {decreases by } k}-\underbrace{\operatorname{odd}_{k}(A, B)}_{\text {decreases by } \leq \operatorname{odd_{k}(A,B)}}
$$

So by Theorem 4.2 (a), $A, B-\{t\}$ is also a k-Tutte-pair for G, contradicting the minimality of A, B.

We introduce some further notation. Set $a \doteq|A|, b \doteq|B|, c \doteq|C|=n-a-b$, $q \doteq \operatorname{odd}_{k}(A, B), r \doteq a+k+q-2$, and $s \doteq n-\max \{0, b-k+1\}-\max \{0, q-1\}-1$. Using this notation, (9) can be written as

$$
\begin{equation*}
\sum_{u \in B} d_{G}(u) \leq k b+a b-k a+q-2 . \tag{10}
\end{equation*}
$$

By Lemma 4.5 (a) we have $0 \leq a<\frac{1}{2} n$. Since B is disjoint from A, we trivially have $0 \leq b \leq n-a$. And since the number of odd components of C is at most the number of elements of C, we are also guaranteed that $q \leq n-a-b$. Finally, since for all vertices v we have $d_{G}(v) \geq d_{1} \geq k$, we get from (10) that $q \geq \sum_{u \in B} d_{G}(u)-k b-a b+$ $k a+2 \geq k b-k b-a b+k a+2=a(k-b)+2$, hence $q \geq \max \{0, a(k-b)+2\}$. It follows that a, b, q satisfy the conditions in Theorem 4.3 (ii).
Next, by Lemma 4.5 (c) we have that

$$
\begin{equation*}
\text { for all } u \in B: \quad d_{G}(u) \leq r . \tag{11}
\end{equation*}
$$

If $C \neq \varnothing$ (i.e., if $a+b<n$), let m be the size of a largest component of $\langle C\rangle$. Then, using Lemma $4.5(\mathrm{~b})$, for all $v \in C$ we have

$$
\begin{aligned}
d_{G}(v) & =e(v, A)+e(v, B)+e(v, C) \leq|A|+\min \{k-1,|B|\}+m-1 \\
& =a+b-\max \{0, b-k+1\}+m-1 .
\end{aligned}
$$

Clearly $m \leq|C|=n-a-b$. If $q \geq 1$, then $m \leq n-a-b-(q-1)$, since C has at least q components. Thus $m \leq n-a-b-\max \{0, q-1\}$. Combining this all gives

$$
\begin{equation*}
\text { for all } v \in C: \quad d_{G}(v) \leq n-\max \{0, b-k+1\}-\max \{0, q-1\}-1=s \tag{12}
\end{equation*}
$$

Next notice that we cannot have $n-a=0$, because otherwise $B=C=\varnothing$ and $\operatorname{odd}_{k}(A, B)=0$, and (9) becomes $0 \leq-k a-2$, a contradiction. From (11) and (12) we see that each of the $n-a>0$ vertices in $B \cup C$ has degree at most max $\{r, s\}$, and so $d_{n-a} \leq \max \{r, s\}$.

If $r \leq s$, then each of the b vertices in B has degree at most r, and so $d_{b} \leq r$. This also holds if $b=0$, since we set $d_{0}=0$, and $r=a+k+q-2 \geq 0$ because $k \geq 2$.
If $r>s$, then each of $n-a-b$ vertices in C has degree at most s by (12), and so $d_{n-a-b} \leq s$. This also holds if $n-a-b=0$, since we set $d_{0}=0$ and

$$
\begin{aligned}
s & =n-\max \{0, b-k+1\}-\max \{0, q-1\}-1 \\
& \geq \min \{n-1, n-q,(n-b)+(k-2),(n-q-b)+(k-1)\} \geq 0,
\end{aligned}
$$

since $k \geq 2$ and $q \leq n-a-b$.
So we always have $r \leq s$ and $d_{b} \leq r$, or $r>s$ and $d_{n-a-b} \leq s$, but also $d_{n-a} \leq$ $\max \{r, s\}$, contradicting assumption (ii) (*) in Theorem 4.3.

How good is Theorem 4.3? We know it is not best monotone for $k=2$. For example, the sequence $\pi=4^{4} 6^{3} 10^{4}$ satisfies Theorem 3.1, but not Theorem 4.3 (it violates $(*)$ when $a=4, b=5$ and $q=2$, with $r=6$ and $s=5$). And it is very unlikely the theorem is best monotone for any $k \geq 3$. Nevertheless, Theorem 4.3 appears to be quite tight. In particular, we conjecture for each $k \geq 2$ there exists a $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ such that

- (π, k) satisfies Theorem 4.3, and
- there exists a degree sequence π^{\prime}, with $\pi^{\prime} \leq \pi$ and $\sum_{i=1}^{n} d_{i}^{\prime}=\left(\sum_{i=1}^{n} d_{i}\right)-2$, such that π^{\prime} is not forcibly k-factor graphical.
Informally, for each $k \geq 2$, there exists a pair (π, π^{\prime}) with π^{\prime} 'just below' π such that Theorem 4.3 detects that π is forcibly k-factor graphical, while π^{\prime} is not forcibly k-factor graphical.
For example, let $n \equiv 2(\bmod 4)$ and $n \geq 6$, and consider the sequences $\pi_{n} \doteq$ $\left(\frac{1}{2} n\right)^{n / 2+1}(n-1)^{n / 2-1}$ and $\pi_{n}^{\prime} \doteq\left(\frac{1}{2} n-1\right)^{2}\left(\frac{1}{2} n\right)^{n / 2-1}(n-1)^{n / 2-1}$. It is easy to verify that the unique realization of π_{n}^{\prime} fails to have a k-factor, for $k=\frac{1}{4}(n+2) \geq 2$. On the other hand, we have programmed Theorem 4.3, and verified that π_{n} satisfies Theorem 4.3 with $k=\frac{1}{4}(n+2)$ for all values of n up to $n=2502$. We conjecture that $\left(\pi_{n}, \frac{1}{4}(n+2)\right)$ satisfies Theorem 4.3 for all $n \geq 6$ with $n \equiv 2(\bmod 4)$.

There is another sense in which Theorem 4.3 seems quite good. A graph G is t-tough if $t \cdot \omega(G) \leq|X|$, for every $X \subseteq V(G)$ with $\omega(G-X)>1$, where $\omega(G-X)$ denotes the number of components of $G-X$. In [1], the authors give the following best monotone condition for π to be forcibly t-tough, for $t \geq 1$.

Theorem 4.6 ([1]). Let $t \geq 1$, and let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be graphical with $n>(t+1)\lceil t\rceil / t$. If

$$
d_{\lfloor i / t\rfloor} \leq i \Longrightarrow d_{n-i} \geq n-\lfloor i / t\rfloor, \quad \text { for } t \leq i<t n /(t+1)
$$

then π is forcibly t-tough graphical.
We also have the following classical result.

Theorem 4.7 ([7]). Let $k \geq 1$, and let G be a graph on $n \geq k+1$ vertices with $k n$ even. If G is k-tough, then G has a k-factor.

Based on checking many examples with our program, we conjecture that there is a relation between Theorems 4.6 and 4.3, which somewhat mirrors Theorem 4.7.

Conjecture 4.8. Let $\pi=\left(d_{1} \leq \cdots \leq d_{n}\right)$ be graphical, and let $k \geq 2$ be an integer with $n>k+1$ and $k n$ even. If π is forcibly k-tough graphical by Theorem 4.6, then π is forcibly k-factor graphical by Theorem 4.3.

References

[1] D. Bauer, H. Broersma, J. van den Heuvel, N. Kahl, and E. Schmeichel. Toughness and vertex degrees. Submitted; available at arXiv:0912.2919v1 [math.CO] (2009).
[2] H.B. Belck. Reguläre Faktoren von Graphen. J. Reine Angew. Math. 188 (1950), 228-252.
[3] J.A. Bondy and V. Chvátal. A method in graph theory. Discrete Math. 15 (1976), 111-135.
[4] G. Chartrand and L. Lesniak. Graphs and Digraphs (3rd ed.). Chapman and Hall, London, 1996.
[5] Y.C. Chen. A short proof of Kundu's k-factor theorem. Discrete Math. 71 (1988), 177-179.
[6] V. Chvátal. On Hamilton's ideals. J. Comb. Theory Ser. B 12 (1972), 163-168.
[7] H. Enomoto, B. Jackson, P. Katerinis, and A. Saito. Toughness and the existence of k-factors. J. Graph Th. 9 (1985), 87-95.
[8] G.H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17 (1918), 75-115.
[9] D.J. Kleitman and D.L. Wang. Algorithms for constructing graphs and digraphs with given valencies and factors. Discrete Math. 6 (1973), 79-88.
[10] M. Kriesell. Degree sequences and edge connectivity. Preprint (2007).
[11] S. Kundu. The k-factor conjecture is true. Discrete Math. 6 (1973), 367-376.
[12] M. Las Vergnas. PhD Thesis. University of Paris VI (1972).
[13] L. Lovász. Valencies of graphs with 1-factors. Period. Math. Hungar. 5 (1974), 149-151.
[14] M. Plummer. Graph factors and factorizations: 1985-2003: A survey. Discrete Math. 307 (2007), 791-821.
[15] A. Ramachandra Rao and S.B. Rao. On factorable degree sequences. J. Comb. Theory Ser. B 13 (1972), 185-191.
[16] W.T. Tutte. The factors of graphs. Canad. J. Math. 4 (1952), 314-328.

[^0]: * Current address: Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

