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Abstract

Recently Alon and Friedland have shown that graphs which are
the union of complete regular bipartite graphs have the maximum
number of 1-factors over all graphs with the same degree sequence.
We identify two families of graphs that have the maximum number of
1-factors over all graphs with the same number of vertices and edges:
the almost regular graphs which are unions of complete regular bi-
partite graphs, and complete graphs with a matching removed. The
first family is determined using Alon and Friedland’s bound. For the
second family, we show that a graph transformation which is known
to increase network reliability also increases the number of 1-factors.
In fact, more is true: this graph transformation increases the number
of k-factors for all k ≥ 1, and “in reverse” also shows that in general,
threshold graphs have the fewest k-factors. We are then able to deter-
mine precisely which threshold graphs have the fewest 1-factors. We
conjecture that the same graphs have the fewest k-factors for all k ≥ 2
as well.

1 Introduction

For any terms or notation not defined in this paper, refer to [14]. We consider
simple graphs G = (V,E) only, where V (G) and E(G) denote the vertex and
edge sets of G respectively, and we set |V (G)| = n(G) and |E(G)| = m(G).
The set of all vertices adjacent to a vertex v ∈ V (G), or neighbors of v ∈
V (G), is called the neighborhood of v ∈ V (G) and is denoted by NG(v). The
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number |NG(v)| is called the degree of the vertex v of G, and is denoted by
dG(v). For brevity, when the choice of G is clear, we abbreviate n(G), m(G),
NG(v), and dG(v) as n, m, N(v), and d(v), respectively. The degree sequence
of G is the n-tuple (d1, . . . , dn) consisting of the degrees of the vertices of G
written in non-decreasing order. We call a graph G regular if d1 = dn, and
almost regular if dn − d1 ≤ 1. Note that, under this terminology, regular
graphs are a subset of almost regular graphs. A k-factor of a graph G is a
spanning subgraph H of G with dH(v) = k for all v ∈ V (G). A matching
of G is a set of independent edges of G. A 1-factor of G is also called a
perfect matching of G. For any fixed k ≥ 1, the number of k-factors of G
is denoted Φk(G), although it is conventional to write Φ1(G) = Φ(G). A
standard reference on matchings is [6].

Recently Alon and Friedland [1] gave an upper bound on the number of 1-
factors of a graphG, based on the degree sequence ofG. If we partition the set
of all graphs into equivalence classes according to their degree sequences, any
graph achieving the Alon and Friedland bound necessarily has the maximum
number of 1-factors in its equivalence class. Alon and Friedland also showed
that the bound is achieved if and only if G is the union of complete regular
bipartite graphs, and so from this view those graphs have the maximum
number of 1-factors.

Identifying graphs which have the maximum number of a particular sub-
graph, or type of subgraph, is a problem that has a long history in graph
theory and its applications; finding graphs with the maximum number of
spanning trees, for instance, is a difficult subproblem in all-terminal net-
work reliability problem, see e.g., [10]. (The all-terminal network reliability
problem seeks a graph topology G that maximizes the probability that G
is connected, given that the edges of G may fail.) However in network reli-
ability applications—and indeed, as with many problems of this type—the
set of all graphs is typically partitioned into equivalence classes based on the
number of vertices and edges, rather than degree sequence. In this paper we
take this view and identify two families of graphs which have the maximum
number of 1-factors in Gn,m, the class of graphs with n vertices and m edges.

The paper is organized as follows. In the next section, we show that al-
most regular graphs which are the union of complete regular bipartite graphs
have the maximum number of 1-factors of any graph in their class. This is
done by maximizing the bound function given in [1] for degree sequences with
fixed sums. In Section 3 we show that for any k ≥ 1, a complete graph with
a matching removed has the maximum number of k-factors of any graph
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in the class Gn,m, m ≥
(

n
2

)
− n/2. This is accomplished by showing that

a graph transformation which is known to increase network reliability also
increases the number of k-factors. In the fourth section we use this graph
transformation “in reverse” to show that, for any n,m, there is a threshold
graph G ∈ Gn,m which has the minimum number of k-factors in its class.
For k = 1, we identify the particular threshold graphs with the minimum
number of 1-factors. We conjecture that the same graphs have the minimum
number of k-factors for any k ≥ 2 as well.

2 Graphs with the maximum number of 1-

factors

We begin with the previously mentioned Alon and Friedland result.

Theorem 2.1 [1] For any graph G with degree sequence π = (d1, . . . , dn),
we have

Φ(G) ≤

(
n∏

i=1

(di!)
1
di

) 1
2

where we take (0!)
1
0 = 0. The bound is achieved if and only if G is the union

of complete regular bipartite graphs.

Determining which graphs in Gn,m have the maximum number of 1-factors
involves, of course, determining which degree sequences with fixed sum 2m

maximize the bound function
∏n

i=1(di!)
1
di . This is done in the next lemma.

Lemma 2.2 For fixed n,m, let Dn,m = {π = (d1, . . . , dn) |π is a degree
sequence of G ∈ Gn,m}. The function f : Dn,m → R defined by

f(π) =
n∏

i=1

(di!)
1
di

is maximized when π is the degree sequence of an almost regular graph.

Proof: If π is not the degree sequence of a regular or almost regular graph
G, then for some indices i, j we have di > dj +1. To prove the lemma we show
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that, if this occurs, we may replace di, dj with d′i = di − 1 and d′j = dj + 1,
and for the resulting degree sequence π′ we will have f(π′) > f(π).

Let Γ(x) =
∫∞

0
e−ttx−1 dt denote Euler’s gamma function, and recall that

Γ(x + 1) = x! for positive integers x. A continuous function g(x) is strictly
concave on an interval I if g′′(x) < 0 for all x ∈ I. In [3] it was shown that
the function

g(x) =
log Γ(x+ 1)

x

was continuous and strictly concave on (−1,∞). As a consequence, g′(x) is
a decreasing function on (−1,∞), and therefore the function

h(x) =

∫ x

x−1

g′(t) dt =
log Γ(x+ 1)

x
− log Γ(x)

x− 1

is decreasing as well. Thus for positive integers x > y we have h(y)−h(x) > 0,
or

log y!

y
− log(y − 1)!

y − 1
−
(

log x!

x
− log(x− 1)!

x− 1

)
> 0.

After some algebraic manipulation, this reveals that for positive integers
x > y,

((x− 1)!)
1

x−1 (y!)
1
y > (x!)

1
x ((y − 1)!)

1
y−1 .

Letting x = di and y = dj + 1 completes the proof. �

Before we state our final result of this section, we note that for any fixed
n,m, there is a unique degree sequence (d1, . . . , dn) that is almost regular
such that 2m =

∑n
i=1 di. (This was shown, for instance, in [11], again in the

context of spanning trees.) Thus among the degree sequences corresponding
to the graphs in any Gn,m class, there is exactly one almost regular degree
sequence.

Theorem 2.3 Almost regular graphs which are the union of complete regular
bipartite graphs have the maximum number of 1-factors in their class.

Proof: Let n,m be positive integers such that there exists an almost
regular G ∈ Gn,m which is the union of complete regular bipartite graphs, let
π = (d1, . . . , dn) denote the degree sequence of that G, and note that π is the
unique almost regular degree sequence corresponding to graphs in this class.
Let H ∈ Gn,m, H 6= G, and let π′ = (d′1, . . . , d

′
n) be the degree sequence of
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H. Assume to the contrary that Φ(G) < Φ(H). Now either π = π′ or π 6= π′.
If π = π′, then by Theorem 2.1, we have Φ(G) = Φ(H) if and only if G = H,
contradicting G 6= H. If π 6= π′, then by the uniqueness of π, we have π′ is
not almost regular. By Theorem 2.1 and Lemma 2.2,

Φ(G) =

(
n∏

i=1

(di!)
1
di

) 1
2

>

(
n∏

i=1

(d′i!)
1
d′
i

) 1
2

= Φ(H),

contradicting Φ(G) < Φ(H). �

3 Graphs with the maximum number of k-

factors

First we introduce some simplifying notation. In the following it is under-
stood that H = G ∪ xy − uv, for instance, creates the graph H from G by
adding the edge xy and removing the edge uv. Also, for conciseness we use
the abbreviation uS = {uv | v ∈ S}.

We also introduce a lemma. The proof of Theorem 3.2 in this section
involves an auxiliary bipartite graph, and the following result due to Galvin
(appearing as a supplemental exercise in [14]) will be useful.

Lemma 3.1 Let G be a bipartite graph with partite sets X, Y . Suppose that
X has no isolated vertices, and that whenever xy ∈ E(G) with x ∈ X, y ∈ Y ,
then d(x) ≥ d(y). Then G has a matching that covers X.

The graph transformation described in the main theorem of this section
was independently shown in [5, 13] to not decrease (and typically increase)
the number of spanning trees of a graph, and in [12] it was shown that this
transformation more generally increases all-terminal network reliability. In
the theorem below we show that, parallel to those results, the resulting graph
H has at least as many k-factors as G, for any k ≥ 1.

Theorem 3.2 Let G be a graph with x, y ∈ V (G) such that NG(y) − x ⊂
NG(x)− y, and let S ⊆ (NG(x)− y)− (NG(y)− x). Let H = G ∪ yS − xS.
Then Φk(G) ≤ Φk(H) for all k ≥ 1.
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Proof: Let k ≥ 1 be fixed. Let FG denote the set of k-factors of G, and
for a set M ⊆ E(G) let FG(M) denote the set of k-factors F of G for which
M ∩F 6= ∅, i.e. FG(M) is the set of k-factors that use at least one edge of M .
The sets FG and FH may be partitioned as FG = (FG − FG(xS)) ∪ FG(xS)
and FH = (FH − FH(yS)) ∪ FH(yS), respectively. Since G− xS = H − yS,
then FG − FG(xS) = FH − FH(yS), and to show Φk(G) ≤ Φk(H) we need
only show |FG(xS)| ≤ |FH(yS)|.

To do so we consider the bipartite graph B whose partite sets are FG(xS)
and FH(yS), with an edge between F ∈ FG(xS) and F ′ ∈ FH(yS) if and
only if for T = S ∩ NF (x) there exists U ⊆ NF (y) − NF (x) such that F ′ =
F ∪ (yT ∪ xU)− (xT ∪ yU). Our goal now is to prove that

(1) For all F ∈ FG(xS), we have dB(F ) ≥ 1.

(2) If F ∈ FG(xS) and F ′ ∈ FH(yS) are adjacent in B, then dB(F ) ≥
dB(F ′).

Once (1) and (2) are shown, Lemma 3.1 guarantees that a matching exists
that covers FG(xS). In particular, |FG(xS)| ≤ |FH(yS)|, completing the
proof of the theorem.

Let F ∈ FG(xS). By definition of FG(xS) we have T = S ∩ NF (x) 6= ∅,
and to guarantee dB(F ) ≥ 1 we only require the existence of a U ⊆ NF (y)−
NF (x) such that |U | = |T |. Since |NF (x)| = |NF (y)| = k, we have |NF (y)−
NF (x)| = |NF (x) − NF (y)|. But T = S ∩ NF (x) ⊆ NF (x) − NF (y), and so
|NF (y)−NF (x)| ≥ |T |. Thus in fact dB(F ) =

(|NF (y)−NF (y)|
|T |

)
=
(|NF (x)−NF (y)|
|S∩NF (x)|

)
,

and since S ∩NF (x) ⊆ NF (x)−NF (y), in particular dB(F ) ≥ 1. This proves
(1).

Now let F ∈ FG(xS) and F ′ ∈ FH(yS) be adjacent in B. By a similar
argument as for dB(F ), we see that dB(F ′) =

(
(NF ′ (x)−NF ′ (y))∩NG(y)|

|S∩NF ′ (y)|

)
. Now

note that, since F ′ = F ∪ (yT ∪ xU)− (xT ∪ yU) for some T = S ∩NF (xS)
and U ⊆ NF (y)−NF (x), then we have S ∩NF (x) = S ∩NF ′(y) and NF (x)∩
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NF (y) = NF ′(x) ∩NF ′(y). Thus

dB(F ′) =

(
(NF ′(x)−NF ′(y)) ∩NG(y)|

|S ∩NF ′(y)|

)
≤
(
NF ′(x)−NF ′(y)|
|S ∩NF ′(y)|

)
=

(
NF (x)−NF (y)|
|S ∩NF (y)|

)
= dB(F )

This proves (2), and completes the proof of the theorem. �

When ` ≤ n/2, we denote the complete graph with a matching of ` edges
removed by Kn−`K2. The fact that, Kn−`K2 has at least as many k-factors
as any other graph in its class, for any k ≥ 1, is an immediate consequence
of the previous theorem.

Theorem 3.3 Let ` ≤ n/2, m ≥
(

n
2

)
− n/2, and let G ∈ Gn,m. Then

Φk(G) ≤ Φk(Kn − `K2), for any k ≥ 1.

Proof: In [12], it was shown that Kn − `K2 may be obtained from the
graph G ∈ Gn,m via a sequence of the graph transformations of Theorem 3.2.
The result follows. �

4 Graphs with the minimum number of 1-

factors

Graphs with few 1-factors have been studied; for example, for results on
graphs with precisely one 1-factor see [6, Ch. 5] and [2, Ch. 2]. Threshold
graphs also have been much studied and there are many equivalent ways to
define them (see, e.g., [7] or [9, Ch. 5]). For our purposes, it is natural to
think of them as split graphs with an additional neighborhood property. A
split graph is a graph G whose vertex set may be partitioned into two sets
V (G) = A(G)∪C(G), such that G[A(G)] is an independent set and G[C(G)]
is a clique. A threshold graph is a split graph where the neighborhoods of
the vertices of A can be nested with respect to set inclusion. In [12], it was
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shown that for any n,m, and any graph H ∈ Gn,m, there is a threshold
graph G ∈ Gn,m such that H can be obtained from G via a sequence of
graph transformations from Theorem 3.2. As an immediate consequence of
that fact and Theorem 3.2, we have the following.

Theorem 4.1 Let k ≥ 1 be fixed. For any H ∈ Gn,m, there exists a threshold
graph G ∈ Gn,m such that Φk(G) ≤ Φk(H).

Thus when finding a graph with the minimum number of 1-factors, we
may restrict our attention to threshold graphs. We mention in passing that
in [12] it was also shown that if the graph H is connected, we may take the
threshold graph G to be connected. Thus Theorem 4.1 holds with both H
and G taken to be connected, as well.

In Gn,m, of course, finding a threshold graph with the minimum number
of 1-factors is trivial for many values of n and m; if

(
n
2

)
− m ≥ n − 1, we

may take G ∈ Gn,m to have an isolated vertex and the minimum number of
1-factors G may have is zero. In this section we settle the question for the
remaining cases when m ≥

(
n
2

)
− (n− 2).

It is easy to determine Φ(G) exactly for any threshold graph G. In the
formula below, n!! is the double factorial, n!! = n(n− 2)(n− 4)..., where we
take (−1)!! = 1.

Lemma 4.2 Let n be even, and G ∈ Gn,m be a threshold graph with A(G) =
{v1, . . . , vj} and d(v1) ≤ · · · ≤ d(vj). Then

Φ(G) = (n− 2j − 1)!!

j∏
i=1

(d(vi)− i+ 1),

if n ≥ 2j and d(vi) ≥ i for all 1 ≤ i ≤ j; otherwise Φ(G) = 0.

Proof: That we require n ≥ 2j and d(vi) ≥ i for all 1 ≤ i ≤ j is obvious.
Now consider the ways A may be matched in a perfect matching. Once the
vertex v1 is matched with any of the d(v1) vertices in its neighborhood, there
remain d(v2)− 1 vertices to which x2 may be matched, which in turn leaves
d(v3)−2 vertices to which x3 may be matched, and so on. Once the j vertices
of A have been matched, there remains a clique of n− 2j vertices of C to be
matched, and there are (n− 2j − 1)!! ways to accomplish this. �
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Now as a preliminary step we identify which threshold graphs with fixed
values of n,m, and |A(G)| have the fewest 1-factors. We assume from this
point forward that |C(G)| is as large as possible, i.e., no vertex in A(G) is
adjacent to every vertex of C(G). (If so, then one of those points may be
moved to C(G).) Note that as a consequence of this assumption, d(v) ≤
n− |A(G)| − 1 for all v ∈ A(G). We also require the following terminology:
given two sequences x = (x1, . . . , xj), y = (y1, . . . , yj), we say x majorizes y,
denoted x � y, if ∑̀

i=1

xi ≥
∑̀
i=1

yi

for all 1 ≤ ` ≤ j, with equality for ` = j. A function f(x1, . . . , xj) is
Schur-convex if f(x) ≥ f(y) whenever x majorizes y.

Lemma 4.3 Let n be even, m ≥
(

n
2

)
− (n − 2), and let Tj ∈ Gn,m be the

threshold graph with A(Tj) = {v1, . . . , vj} satisfying d(v2) = · · · = d(vj) =
n − j − 1. Then if G ∈ Gn,m is any other threshold graph with |A(G)| = j,
we have Φ(Tj) ≤ Φ(G).

Proof: Let A(Tj) = {v1, . . . , vj} and A(G) = {w1, . . . , wj}. We may
assume that d(w1) ≤ · · · ≤ d(wj) and d(wi) ≤ n−j−1 for all 1 ≤ i ≤ j. Since∑j

i=1 d(vi) =
∑j

i=1 d(wi), this implies that d(v1) < d(w1) and d(vi) ≥ d(wi)
for all 2 ≤ i ≤ j. As a consequence,

(d(v2)− 1, . . . , d(vj)− j + 1, d(v1)) � (d(w2)− 1, . . . , d(wj)− j + 1, d(w1)).

Call the two sequences above d and d′ respectively, so d � d′. It is well
known (see, e.g., [8, Ch. 3.F]) that the function f(x1, . . . , xj) = −

∏j
i=1 xi is

Schur-convex. Therefore f(d) ≥ f(d′), or

j∏
i=1

(d(vi)− i+ 1) ≤
j∏

i=1

(d(wi)− i+ 1).

Since |A(Tj)| = |A(G)| = j, multiplying both sides of the inequality by
(n− 2j − 1)!! gives Φ(Tj) ≤ Φ(G), as required. �

As in Lemma 4.3, let Tj ∈ Gn,m denote the threshold graph with A(G) =
{v1, . . . , vj} and d(v2) = · · · = d(vj) = n− j − 1. Then the graphs with the
minimum number of 1-factors are the graphs T1, i.e., the threshold graph
with |A(G)| = 1 and |C(G)| = n− 1.
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Theorem 4.4 Let n be even, m ≥
(

n
2

)
− (n − 2). Then Φ(T1) ≤ Φ(G) for

all G ∈ Gn,m.

Proof: By the previous lemma it suffices to show that Φ(Tj) ≤ Φ(Tj+1)
for all j ≥ 1. Let A(Tj) = {v1, . . . , vj} and A(Tj+1) = {w1, . . . , wj+1}, and
note that d(vi) = n− j − 1 for all 2 ≤ i ≤ j, and that d(wi) = n− j − 2 for
all 2 ≤ i ≤ j + 1. Since m(Tj) = m(Tj+1), we have(

j

2

)
+ (n− j − d(v1)) + j − 1 =

(
j + 1

2

)
+ (n− (j + 1)− d(w1)) + j,

or, after simplification, d(v1) + j = d(w1). But it is easy to see that, after
canceling like terms,

Φ(Tj)

Φ(Tj+1)
=

d(v1)(n− j − 2)

d(w1)(n− 2j − 2)
=

d(v1)(n− j − 2)

(d(v1) + j)(n− 2j − 2)
.

This fraction is no larger than 1 provided that d(v1) ≤ n − 2j − 2. But
d(v1) + j = d(w1) ≤ d(w2) = n− j − 2, completing the proof. �

We conjecture that T1 has the minimum number of k-factors in its class
for all k ≥ 2 as well.
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