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Abstract

One of Frank Boesch’s best known papers is ‘The strongest monotone de-
gree conditions for n-connectedness of a graph’ [1]. In this paper, we give
a simple sufficient degree condition for a graph to be k-edge-connected, and
also give the strongest monotone condition for a graph to be 2-edge-connected.

Keywords: strongest monotone condition, edge-connectivity, degree sequence, weakly
optimal

1 Introduction

Frank Boesch had a long and illustrious career in both electrical engineering and
mathematics. However, as those of us who worked with him will tell you, his main
love was graph theory. He was especially interested in problems involving the vertex
degrees of a graph, and often referred to the well-known algorithm of Havel and
Hakimi, which was developed independently by Havel [8] and by Frank’s good friend
Lou Hakimi [7]. This algorithm allows one to determine if a degree sequence can

∗Regretfully, Lou Hakimi died on June 23, 2006. He was a longtime associate editor of Networks,
and a good friend of Professor Boesch.
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be realized as the vertex degrees of a graph, and to effectively construct such a
realization when this is the case.

Historically, the degree sequence of a graph has been used to provide sufficient con-
ditions for the graph to have a certain property, e.g. hamiltonian, k-connected, etc.
If P denotes a graphical property, we say a graphical degree sequence π is forcibly
P if every realization of π has property P .

Sufficient conditions for a degree sequence to be forcibly hamiltonian were given by
several authors, culminating in the following condition of Chvátal [6] in 1972.

Theorem 1.1. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence, with n ≥ 3. If
dj ≤ j < n

2
implies dn−j ≥ n− j, then π is forcibly hamiltonian.

Unlike its predecessors, Chvátal’s condition has the property that if it does not
guarantee that a degree sequence π is forcibly hamiltonian, then π is majorized by
a degree sequence π′ which has a nonhamiltonian realization. As we will see, this
implies that Chvátal’s condition is the strongest of an entire class of sufficient con-
ditions for a degree sequence to be forcibly hamiltonian.

Several sufficient conditions for a degree sequence to be forcibly k-connected have
also been given. Among the most prominent are the conditions of Chartrand and
Harary [4], Chartrand, Kapoor, and Kronk [5], and the following condition of Bondy
[2] (though the form in which we give Bondy’s condition is due to Boesch [1]).

Theorem 1.2. Let π = (d1 ≤ · · · ≤ dn) be a graphical sequence with n ≥ 2, and let
1 ≤ k ≤ n− 1. If dj ≤ j + k − 2 implies dn−k+1 ≥ n− j for 1 ≤ j ≤ bn−k+1

2
c, then

π is forcibly k-connected.

Boesch also showed that if Bondy’s condition does not guarantee that π is forcibly
k-connected, then π is majorized by a sequence π′ which has a non-k-connected
realization. Thus Bondy’s condition is a strongest sufficient degree condition for k-
connectedness in precisely the same way that Chvátal’s condition is for hamiltonicity.

In the present paper, which is dedicated to Frank Boesch, we develop sufficient con-
ditions for a degree sequence to be forcibly k-edge-connected. Of course, Bondy’s
condition in Theorem 1.2 provides such a condition. But whereas Theorem 1.2
provides a strongest sufficient condition for k-connectedness, it does not provide a
comparably strong condition for k-edge-connectedness. After establishing a general
framework in which to identify strongest sufficient degree conditions for a graphi-
cal property, we give such a condition for k-edge-connectedness when k = 2. We
then conjecture an analogous strongest condition for k = 3, which unfortunately
indicates the rapidly increasing complexity of the strongest sufficient condition as k
increases. This suggests the desirability of a simple sufficient condition for k-edge-
connectedness which, although not strongest, at least improves Bondy’s condition
in Theorem 1.2. In the final section, we give such a condition and then compare it
to Theorem 1.2.
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A word about our terminology and notation. In this paper, we consider only undi-
rected graphs without loops or multiple edges, i.e., simple graphs. Our terminology
and notation will be standard except as indicated, and a good reference for any
undefined terms is [9]. A degree sequence of a graph on n vertices is any sequence
π = (d1, d2, . . . , dn) consisting of the vertex degrees of the graph. We will usually as-
sume the degree sequence is in nondecreasing order (in contrast to [9], where degree
sequences are usually in nonincreasing order). We will generally use the standard
abbreviated notation for degree sequences; e.g., (4, 4, 4, 4, 4, 5, 5) will be denoted
4552. A sequence of integers π = (d1, d2, . . . , dn) is called graphical if there exists
a graph G having π as one of its vertex degree sequences. In this case we call G
a realization of π. If π = (d1, d2, . . . , dn) and π′ = (d′1, d

′
2, . . . , d

′
n) are two integer

sequences, we say that π′ majorizes π, denoted π′ ≥ π, if d′j ≥ dj for 1 ≤ j ≤ n.

2 A Method To Identify Strongest Monotone De-

gree Conditions

We now describe a framework which unifies and formalizes the techniques first in-
troduced by Chvátal [6], and used by Boesch [1], to establish that Theorems 1.1
and 1.2 are strongest in a certain sense. While this framework can be applied to
many graph properties, in the development below we will use k-connectedness as
the vehicle property.

Consider a function f : {Graphical Degree Sequences} → {0, 1} such that f(π) = 1
implies π is forcibly k-connected, while f(π) = 0 implies no conclusion. We call
such a function a forcibly k-connected function, since f provides (via f(π) = 1) a
sufficient condition for π to be forcibly k-connected. We call a forcibly k-connected
function f monotone increasing if π, π′ are graphical, π′ ≥ π and f(π) = 1 implies
f(π′) = 1; it is called optimal (respectively, weakly optimal) if f(π) = 0 implies π
itself has a non-k-connected realization (respectively, there exists π′ ≥ π such that
π′ has a non-k-connected realization). It is immediate that the forcibly k-connected
functions corresponding to the conditions of Chartrand and Harary [4], Chartrand,
Kapoor, and Kronk [5], and Bondy [2] are all monotone increasing. Moreover,
Boesch [1] proved that the function corresponding to Bondy’s condition (Theorem
1.2) is weakly optimal. Indeed, if the condition in Theorem 1.2 fails for some j,
1 ≤ j ≤ bn−k+1

2
c, then π is majorized by π′ = (j+k−2)j(n−j−1)n−j−k+1(n−1)k−1,

which has a non-k-connected realization Kk−1 + (Kj ∪ Kn−j−k+1). For brevity in
the sequel, we will often abbreviate assertions like ‘the forcibly k-connected function
corresponding to Theorem 1.2 is weakly optimal’ to ‘Theorem 1.2 is weakly optimal’.

We now show

Claim 2.1. If f, f0 are monotone increasing forcibly k-connected functions and f0

is weakly optimal, then f0(π) ≥ f(π) for every graphical sequence π.

Proof: Suppose to the contrary that for some graphical sequence π, we have

1 = f(π) > f0(π) = 0.
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Since f0 is weakly optimal, there exists π′ ≥ π such that π′ has a non-k-connected
realization, and thus f(π′) = 0. However f(π) = 1, f(π′) = 0, and π′ ≥ π together
imply f is not monotone increasing, a contradiction. �

Thus the weakly optimal forcibly k-connected function corresponding to Bondy’s
condition (Theorem 1.2) is the strongest monotone increasing forcibly k-connected
function.

3 Strongest Monotone Degree Condition For 2-

Edge-Connectedness

We noted above that Theorem 1.2 provides a sufficient condition for k-edge-con-
nectedness. But unlike the situation for k-connectedness, for which Theorem 1.2 is a
strongest monotone condition, Theorem 1.2 is not a strongest monotone condition for
k-edge-connectedness, when k ≥ 2. For instance, let k = 2 and consider π = 25. It is
easy to verify that Theorem 1.2 fails to guarantee that π is forcibly 2-edge-connected,
but there is no π′ ≥ π such that π′ has a non-2-edge-connected realization.

We now give the strongest monotone degree condition for 2-edge-connectedness.

Theorem 3.1. Let π = (d1 ≤ · · · ≤ dn) be graphical. If

(1) d1 ≥ 2,

(2) dj−1 ≤ j − 1 and dj ≤ j implies dn−1 ≥ n− j or dn ≥ n− j + 1, for 3 ≤ j < n
2
,

(3) n even and dn/2 ≤ n
2
− 1 implies dn−2 ≥ n

2
or dn ≥ n

2
+ 1

all hold, then π is forcibly 2-edge-connected.

Proof: It is easy to verify that if π satisfies (1) through (3), then π is forcibly
connected by Theorem 1.2. Now suppose π satisfies (1) through (3), but π is not
forcibly 2-edge-connected. Then π has a realization G consisting of two connected
components H1 and H2 of order j and n− j, respectively, joined by a cut-edge (x, y)
where the vertices x and y belong to H1 and H2, respectively. We may assume that
3 ≤ j ≤ bn

2
c, since j ≤ 2 implies d1 = 1, contradicting (1). Each vertex in H1−{x}

has degree at most j − 1, while x has degree at most j. Thus dj−1 ≤ j − 1 and
dj ≤ j.

If j < n
2
, each vertex in H1 has degree at most n − j − 1, each vertex in H2 − {y}

has degree at most n− j− 1, and y has degree at most n− j. Thus dn−1 ≤ n− j− 1
and dn ≤ n− j, and so (2) fails for j, a contradiction.

If n is even and j = n
2
, each vertex in G − {x, y} has degree at most n

2
− 1, while

x, y have degree at most n
2
. Thus dn−2 ≤ n

2
− 1 and dn ≤ n

2
, and the consequent

in (3) fails. On the other hand, n − 1 ≥ d1 ≥ 2 and n even implies n ≥ 4, and so
n
2
≤ n − 2. Thus dn/2 ≤ dn−2 ≤ n

2
− 1, and the antecedent in (3) is satisfied. So
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condition (3) fails, a contradiction. This proves Theorem 3.1. �

Regarding the weak optimality of Theorem 3.1, we now show that if any of (1), (2),
or (3) fail for π, then π is majorized by a degree sequence π′ having a realization
G′ which is not 2-edge-connected. Notationally, let G(n, j) denote two disjoint
cliques Kj and Kn−j joined by a single cut edge. If (1) fails, we may take π′ =
11(n − 2)n−2(n − 1)1 and G′ = G(n, 1). If (2) fails for some j, 3 ≤ j < n

2
, we may

take π′ = (j − 1)j−1j1(n− j − 1)n−j−1(n− j)1 and G′ = G(n, j). Finally, if (3) fails
we may take π′ = (n

2
− 1)n−2(n

2
)2 and G′ = G(n, n

2
). Thus Theorem 3.1 is weakly

optimal.

Ideally, we would like to extend Theorem 3.1 to give a strongest monotone degree
condition for a graph to be k-edge-connected for k ≥ 3. However, this appears to
be quite unwieldy. As in Theorem 3.1 for k = 2, we need to find a weakly optimal
degree condition that blocks π from having a realization which is a subgraph of a
graph consisting of two disjoint cliques Kj and Kn−j, j ≤ bn

2
c, joined by an edge

cut of k − 1 edges. Unfortunately, these edge cuts can range in form from k − 1
independent edges to a star, with each different form demanding a different set of
blocking conditions. For k = 3, an analysis similar to the one used to develop
Theorem 3.1 suggests the following is the strongest monotone sufficient condition.

Conjecture 3.2. Let π = (d1 ≤ · · · ≤ dn) be graphical. If

(1) d1 ≥ 3,

(2) dj−2 ≤ j − 1 and dj ≤ j implies dn−2 ≥ n− j or dn ≥ n− j + 1, for 3 ≤ j < n
2
,

(3) dj−1 ≤ j − 1 and dj ≤ j + 1 implies dn−2 ≥ n − j or dn ≥ n − j + 1, for
3 ≤ j < n−1

2
,

(4) dj−2 ≤ j − 1 and dj ≤ j implies dn−1 ≥ n− j or dn ≥ n− j + 2, for 3 ≤ j < n
2
,

(5) n even and dn/2 ≤ n
2
− 1 implies dn−4 ≥ n

2
or dn ≥ n

2
+ 1,

(6) n odd and d(n−3)/2 ≤ n−3
2

implies dn−3 ≥ n+1
2

or dn ≥ n+3
2

,

(7) n even and dn/2 ≤ n
2
− 1 implies dn−3 ≥ n

2
or dn−1 ≥ n

2
+ 1 or dn ≥ n

2
+ 2

all hold, then π is forcibly 3-edge-connected.

It seems likely that the number of individual conditions in the strongest monotone
degree condition for a graph to be k-edge-connected (e.g., conjectured to be 7 con-
ditions when k = 3) will increase rapidly with k. This suggests the desirability
of finding a simple, though not weakly optimal, sufficient condition for a degree
sequence to be forcibly k-edge-connected.
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4 A Simple Degree Condition For k-Edge-Con-

nectivity

Of course, Theorem 1.2 provides a simple condition for a degree sequence to be
forcibly k-edge-connected. But Theorem 1.2 was designed as a sufficient condition
for k-connectedness rather than k-edge-connectedness. We now give another simple
condition which, though not weakly optimal, provides a substantial improvement
over Theorem 1.2.

Theorem 4.1. Let π = (d1 ≤ · · · ≤ dn) be graphical, and let k ≥ 1 be an integer. If

(1) d1 ≥ k, and

(2) dj−k+1 ≤ j−1 and dj ≤ j+k−2 implies dn ≥ n−j+k−1 for k+1 ≤ j ≤ bn
2
c,

then π is forcibly k-edge-connected.

Proof: Suppose π satisfies (1) and (2), but π is not forcibly k-edge-connected. Then
π has a realization with a minimum edge-cut of k − 1 or fewer edges joining two
components H1 and H2, with |V (H1)| = j, |V (H2)| = n− j for some j, 1 ≤ j ≤ bn

2
c.

We consider two cases.

Case 1. 1 ≤ j ≤ k.

Since d1 ≥ k by (1), we have

d1 + d2 + · · ·+ dj ≥ jk.

On the other hand, the sum of the degrees in H1 is at most j(j − 1) + k− 1, and so

d1 + d2 + · · ·+ dj ≤ j(j − 1) + k − 1.

Combining these inequalities gives jk ≤ j(j − 1) + k − 1, or (j − 1)(k − j) ≤ −1,
which contradicts 1 ≤ j ≤ k.

Case 2. k + 1 ≤ j ≤ bn
2
c.

At most k−1 vertices in H1 can have degree larger than j−1, and so dj−(k−1) ≤ j−1.
Also, no vertex in H1 can have degree larger than (j−1)+(k−1) = j+k−2, and so
dj ≤ j+k−2. Since k+1 ≤ j ≤ bn

2
c, condition (2) implies dn ≥ n−j+k−1. But no

vertex in the realization can have degree larger than (n−j−1)+(k−1) = n−j+k−2,
a contradiction. �

The following corollary of Theorem 4.1 is well known [3].

Corollary 4.2. Let π = (d1 ≤ · · · ≤ dn) be graphical. If δ ≥ bn
2
c, then π is forcibly

δ-edge-connected.

Proof: Set k = δ in Theorem 4.1. Condition (1) becomes d1 ≥ k = δ, which is true
by definition. Moreover, the range in condition (2) becomes δ + 1 ≤ j ≤ bn

2
c. Since
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δ ≥ bn
2
c, this range is empty, and condition (2) vacuously holds. �

We now show that Theorem 4.1 is at least as strong as Theorem 1.2 (Bondy’s
condition), and sometimes significantly better. We first prove the following.

(a) If π satisfies the hypothesis of Theorem 1.2, then π satisfies the hypothesis of
Theorem 4.1.

Proof of (a): If π satisfies the hypothesis of Theorem 1.2 for j = 1, we have d1 ≥ k,
which is (1) in Theorem 4.1.

To show that π satisfies (2) in Theorem 4.1, suppose that dj−k+1 ≤ j − 1 and
dj ≤ j + k − 2 for some j, where k + 1 ≤ j ≤ bn

2
c. In particular, dj−k+1 ≤ j − 1 =

(j − k + 1) + k − 2. Setting j′ = j − k + 1, this becomes dj′ ≤ j′ + k − 2, where
2 ≤ j′ ≤ bn−k+1

2
c. So by the hypothesis of Theorem 1.2, we have dn−k+1 ≥ n− j′ =

n− j + k − 1. A fortiori dn ≥ n− j + k − 1, which is (2) in Theorem 4.1. �

Of course, Theorem 4.1 and Theorem 1.2 are equivalent when k = 1. But we have
the following.

(b) For every k ≥ 2, there exists a degree sequence which satisfies the hypothesis of
Theorem 4.1, but not of Theorem 1.2.

Proof of (b): Given k ≥ 2, choose n ≡ 1(mod 4) so large that n−1
2
≥ k, and

consider the degree sequence π =
(

n−1
2

)n
. Since δ = n−1

2
= bn

2
c, Corollary 4.2 (and

of course Theorem 4.1) guarantees that π is forcibly δ-edge-connected, and thus
forcibly k-edge-connected since k ≤ n−1

2
= δ.

On the other hand, Theorem 1.2 fails to show π is even forcibly 2-edge-connected,
since for j = n−1

2
= bn−2+1

2
c, we have d(n−1)/2 ≤ n−1

2
while dn−1 = n−1

2
� n−

(
n−1

2

)
.

Thus π does not satisfy Theorem 1.2 for any k ≥ 2. �

Finally, we observe that Theorem 4.1 is not weakly optimal for k = 2. For example,
consider the sequence π = 4654. Theorem 3.1 shows π is forcibly 2-edge-connected.
However, Theorem 4.1 fails to show this, since condition (2) fails for j = 5. But
if π′ ≥ π, then π′ must be forcibly 2-edge-connected, since the forcibly 2-edge-
connected function corresponding to Theorem 3.1 is monotone increasing. Thus
Theorem 4.1 is not weakly optimal for k = 2.
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