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Let τ(G) and τG(e) denote the number of spanning trees of a graph G and the number of
spanning trees of G containing edge e of G, respectively. Ferrara, Gould, and Suffel asked if, for
every rational 0 < p/q < 1 there existed a graph G with edge e ∈ E(G) such that τG(e)/τ(G) = p/q.
In this note we provide constructions that show this is indeed the case. Moreover, we show this is
true even if we restrict G to claw-free graphs, bipartite graphs, or planar graphs. Let dep(G) =
maxe∈G τG(e)/τ(G). Ferrara et al. also asked if, for every rational 0 < p/q < 1 there existed a graph
G with dep(G) = p/q. For the claw-free construction, we are also able to answer this question in
the affirmative.

1. Introduction

The number of spanning trees of a graph G, denoted τ(G), has been a well-studied graph pa-
rameter since at least 1889, when Cayley first determined that τ(Kr) = rr−2 [3]. Since Cayley’s
result, formulas for t(G) have been determined for a wide array of graphs [cites]. Often called the
complexity of G, τ(G) also plays an important role in a number of graph theory applications, with
network reliability and physics (see for instance [5, 6, 16, 18, 21]) perhaps the two most prominent.
For a graph G and edge e ∈ E(G), let τG(e) denote the number of spanning trees of G which
contain e. The ratio dG(e) = τG(e)/τ(G), the proportion of spanning trees of G which contain
e, has also appeared in a number of applications, beginning at least as far back as Kirchhoff [9]
where it represents the effective resistance between two adjacent vertices in the graph of an elec-
trical circuit. In theoretical chemistry, dG(uv) for an edge uv ∈ E(G) is the resistance distance
Ω(u, v), an intrinsic graph metric [10] which has recently developed its own substantial literature
(see for instance [2, 4, 13, 20, 22]). The ratio τG(e)/τ(G) can be interpreted as the probability
that a randomly chosen spanning tree contains the edge e, and in this probabilistic context it has
been investigated in the context of random walks on graphs [7] and uniform spanning trees [15].
The papers mentioned here are just the ‘tip of the iceberg’; the interested reader may consult the
references in the papers to learn more.

In [8], Ferrara, Suffel and Gould raised a new and natural question about dG(e). They called
dG(e) the spanning tree edge density of e, a term which for conformance we will use also, and
looked at problems involving the spanning tree edge dependence of G, or dep(G) = maxe∈G dG(e).
In network reliability terms, an edge e with dG(e) = dep(G) is an edge whose removal would dam-
age the network the most. Let p/q < 1 be a positive rational number. If there exists a graph
G with edge e ∈ E(G) such that dG(e) = p/q, we say that the spanning tree edge density p/q is
constructible. Similarly, if there exists a graph G with dep(G) = p/q, we say that the spanning tree
edge dependence is constructible. In [8] the following realizability questions were raised.

Question. Which rational spanning tree edge densities are constructible? More specifically, which
spanning tree edge dependencies are constructible?
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In this note we provide graph families that prove that all rational densities 0 < p/q < 1, i.e., all
possible rational densities, are constructible. Moreover, we are able to show that all such densities
are constructible even when restricted to classes of graphs such as claw-free graphs, bipartite graphs,
or planar graphs. For the claw-free construction, we are also able to answer the second question in
the affirmative, showing that all spanning tree edge dependencies are constructible.

In the rest of the paper we will almost invariably shorten the terms ‘spanning tree edge density’
and ‘spanning tree edge dependence’ to ‘density’ and ‘dependence’, respectively. We also mention
the following terminology, which will be useful. A spanning tree is a spanning forest with one
component; a closely related graph structure, the spanning thicket [1] (sometimes called a span-
ning bitree [15]) is a spanning forest with exactly two components. If vertices u, v lie in different
components of a spanning thicket, we say that the thicket separates u and v, or that u and v are
separated by the thicket. We denote the number of spanning thickets of a graph G by b(G), and
the number of spanning thickets of G that separate vertices u and v by bG(u, v). A good reference
for any terms not defined in the body of the paper is [17].

2. Necklace Graphs

Informally, our first construction is obtained by replacing the edges of a cycle with graphs,
resulting in a sequence of graphs “glued” together in a circle. We will also require that, after
the replacements, the edges of the original cycle have been replaced by edges of the replacement
graphs; these edges will play a key role in the construction of the required densities. Formally, let
{Gi}ni=1 be a sequence of graphs, each with a distinguished edge ei = uivi. The necklace graph
N(G1(e1), . . . , Gn(en)) is obtained by identifying each vertex vi with each ui+1, where the indices
are taken mod n. When there is no confusion we may omit the distinguished edges and write
N(G1, . . . , Gn). For reference, we will refer to the individual Gi as the constituent graphs of the
necklace graph, the distinguished (cycle) edges e1, . . . , en will be the key edges and the vertices
ui, vi for which ei = uivi will be the key vertices of the necklace graph.

Figure 1. The necklace graph G = N(K2,K3,K4,K5,K4,K3).

Given a necklace graph G, we can calculate the quantities τ(G) and τG(xy) for an arbitrary edge
xy ∈ E(G) in terms of the spanning trees and thickets of the constituent graphs.

Theorem 2.1. Let G = N(G1, . . . , Gn) be a necklace graph. Then

τ(G) =
n∏

i=1

τ(Gi)
n∑

i=1

dGi(uivi)
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and, for any xy ∈ E(Gk), 1 ≤ k ≤ n,

τG(xy) =
n∏

i=1

τ(Gi)

bGk
(xy;uk, vk)

τ(Gk)
+ dGk

(xy)
∑
i 6=k

dGi(uivi)


where bGk

(xy;uk, vk) denotes the number of spanning thickets of Gk separating uk and vk that
contain the edge xy.

Proof. Any spanning tree of G is formed by selecting a spanning thicket of a particular Gj , 1 ≤
j ≤ n, that separates uj and vj , and taking spanning trees of the remaining Gi, i 6= j. Summing
over all j we obtain

τ(G) =
n∑

j=1

bGj (uj , vj)
∏
i 6=j

τ(Gi)


=

n∏
i=1

τ(Gi)
n∑

j=1

bGj (uj , vj)

τ(Gj)
.

It is easy to see that adding or removing the edge ujvj produces a bijection between the spanning
thickets of Gj that separate uj and vj , and the spanning trees of Gj that contain the edge ujvj .
Thus bGj (uj , vj) = τGj (ujvj), and the above becomes

τ(G) =

n∏
i=1

τ(Gi)

n∑
j=1

τGj (ujvj)

τ(Gj)

=

n∏
i=1

τ(Gi)

n∑
i=1

dGi(uivi).

proving the first part of the theorem.
If xy ∈ E(Gk) is in a spanning tree of necklace graph G, then either xy is part of a spanning

thicket of Gk or xy is part of a spanning tree of Gk. Thus, by a similar analysis as in the calculation
of τ(G), we have

τG(xy) = bGk
(xy;uk, vk)

∏
i 6=k

τ(Gi) + τGk
(xy)

∑
i 6=k

bGi(ui, vi)
∏
j 6=i,k

τ(Gj)


=

n∏
i=1

τ(Gi)

bGk
(xy;ui, vi)

τ(Gk)
+
τGk

(xy)

τ(Gk)

∑
i 6=k

bGi(ui, vi)

τ(Gi)


=

n∏
i=1

τ(Gi)

bGk
(xy;ui, vi)

τ(Gk)
+ dGk

(xy)
∑
i 6=k

tGi(uivi)

τ(Gi)


=

n∏
i=1

τ(Gi)

bGk
(xy;ui, vi)

τ(Gk)
+ dGk

(xy)
∑
i 6=k

dGi(uivi)


�

As a consequence of Theorem 2.1 we have the following result on key edges.
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Theorem 2.2. Let G = N(G1, . . . , Gn) be a necklace graph. Then for any key edge ek = ukvk,
1 ≤ k ≤ n,

dG(ukvk) = dGk
(ukvk)

(∑
i 6=k dGi(uivi)∑n
i=1 dGi(uivi)

)
= dGk

(ukvk)

(
1− dGk

(ukvk)∑n
i=1 dGi(uivi)

)
.

Proof. If an edge ek = ukvk appears in a spanning thicket then that thicket cannot separate uk and
vk. In particular, bGk

(ukvk;uk, vk) = 0. Applying this fact in the previous theorem, we obtain

τG(ukvk) =

(
n∏

i=1

τ(Gi)

)
dGk

(ukvk)
∑
i 6=k

dGi(uivi)

for any key edge ukvk ∈ E(Gk). The formula for dG(ukvk) now follows easily. �

Note that the density of any key edge in the necklace graph depends only upon the densities of
the key edges within the constituent graphs G1, . . . , Gn.

3. Constructing Densities

In this section we show that any rational density 0 < p/q < 1 is constructible by a claw-free
graph G, bipartite graph G, or planar graph G. The constructions all take advantage of properties
of unit fractions (sometimes called Egyptian fractions), rational numbers of the form 1/t for a
positive integer t. We gather the needed properties together in the following simple lemma, a proof
of which we include for completeness.

Lemma 3.1. Any rational number may be written as the sum of unit fractions. More specifically,
any rational number may be written as (a) the sum of an even number of unit fractions, and (b)
the sum of an arbitrarily large number of unit fractions.

Proof. A rational number p/q can always be written as the sum of p terms, each of which is 1/q.
And if we take any sum of unit fractions then replacing any specific term in the sum, say 1/t, with
the two unit fractions 1/2t and 1/2t does not change the sum but increases the number of unit
fractions in the sum by one. This fact proves both (a) and (b). �

In the constructions of this section we will use edge-transitive graphs as the constituent graphs
of our necklace graphs. For these graphs calculating edge densities is straightforward.

Theorem 3.2 ([8, 10])). Let G be an edge-transitive graph. Then for any edge e ∈ E(G),

dG(e) =
|V (G)| − 1

|E(G)|
.

(In a coincidence, the quantity |E(G)|/(|V (G)− 1|) has been called the “density” of a graph in the
context of disjoint spanning trees, see for instance [11, 12].)

We can now construct any rational edge density. By Lemma 3.1, condition (1) in the following
theorem may always be satisfied.

Theorem 3.3. Let p, q be positive integers, p < q, and let G = N(Kr1 , . . . ,Krn) with r1 = 2 and
ri > 1, 2 ≤ i ≤ n such that

(1)

n∑
i=2

1

ri
=

p

2(q − p)
.

Then dG(e1) = p/q.
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Proof. Since a complete graph Kr is edge-transitive then by Theorem 3.2, the density of any edge
is

dKr(e) =
r − 1

r(r − 1)/2
=

2

r
.

In particular, since G1 = K2 we have dG1(e1) = 1 and dGi(uivi) = 2/ri for 2 ≤ i ≤ n. Thus, by
Theorem 2.2, the density of e1 in G is

dG(e1) = dG1(e1)

(∑n
i=2 dGi(uivi)∑n
i=1 dGi(uivi)

)
=

∑n
i=2

2
ri

1 +
∑n

i=2
2
ri

=
p/(q − p)

1 + p/(q − p)
=
p

q

as desired. �

In the next section we will show that, if the ri’s for 2 ≤ i ≤ n in condition (1) are chosen to
be large enough, the density dG(e1) will in fact be the maximum density of the given necklace
graph. Hence the construction of Theorem 3.3 will also show that every rational spanning tree
edge dependence is constructible.

It is easy to see that the necklace graph of Theorem 3.3 is claw-free, and so we note the following.

Corollary 3.4. Let p, q be positive integers, p < q. Then there exists a claw-free graph G with edge
e such that dG(e) = p/q.

A similar construction, which uses complete bipartite graphs in place of complete graphs, demon-
strates that densities are also constructible by bipartite graphs.

Theorem 3.5. Let p, q be positive integers, p < q, let ti, 2 ≤ i ≤ n, be positive integers such that
n∑

i=2

1

ti
=

p

q − p
.

Let r1 = s1 = 1 and, for all 2 ≤ i ≤ n, let ri = 2ti and si = 2ti − 1. Then in G =
N(Kr1,s1 ,Kr2,s2 , . . . ,Krn,sn) we have dG(e1) = p/q.

Proof. Since a complete bipartite graph Kr,s is edge-transitive then the density of any edge is

dKr,s(e) =
r + s− 1

rs
.

In particular, since G1 = K1,1 then dG1(u1v1) = 1, and for 2 ≤ i ≤ n,

dGi(uivi) =
ri + si − 1

risi
=

2ti + (2ti − 1)− 1

2ti(2ti − 1)
=

4ti − 2

2ti(2ti − 1)
=

1

ti
.

Thus

dG(e1) = dG1(u1v1)

(∑n
i=2 dGi(uivi)∑n
i=1 dGi(uivi)

)
=

∑n
i=2

ri+si−1
risi

1 +
∑n

i=2
ri+si−1

risi

=

∑n
i=2

1
ti

1 +
∑n

i=2
1
ti

=
p/(q − p)

1 + p/(q − p)
=
p

q

as desired. �

Since the constituent graphs of the necklace graph of Theorem 3.5 have no odd cycles, then in
order to insure no odd cycles exist in the necklace graph we need only insure that the conditions
of the theorem can be satisfied with n even. By Lemma 3.1(a), this is always possible, so we have
the following.

Corollary 3.6. Let p, q be positive integers, p < q. Then there exists a bipartite graph G with edge
e such that dG(e) = p/q.
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A different construction can produce rational densities via a planar graph, again by utilizing sums
of unit fractions. A generalized theta graph Θ(r1, . . . , rn) is a graph consisting of two distinguished
vertices u, v with n disjoint paths between them, of lengths (in edges) of r1, . . . , rn. (When n = 2
we obtain a cycle with r1 + r2 edges. A generalized theta graph with n = 3 is typically called
simply a theta graph.) Note that u and v are adjacent in Θ(r1, . . . , rn) if and only if rk = 1 for
some 1 ≤ k ≤ n. We now have the following.

Theorem 3.7. Let G = Θ(r1, . . . , rn) be a generalized theta graph. Then

τ(G) =
n∑

j=1

∏
i 6=j

ri =
n∏

i=1

ri

(
n∑

i=1

1

ri

)
and, if ek is an edge of the kth path of G, then

τG(ek) =

n∏
i=1

ri

 n∑
i=1

1

ri
− 1

rk

∑
i 6=k

1

ri

 .

Proof. A spanning tree is obtained from G by removing an edge from all but one of the n paths
joining u and v. Hence

τ(G) =

n∑
j=1

∏
i 6=j

ri =

n∏
i=1

ri

(
n∑

i=1

1

ri

)
.

To determine τG(ek) where ek is an edge of the kth path, we note that the number of spanning
trees that do not contain ek is τ(G− ek), and this is equal to the number of spanning trees of the
multipath graph G with the kth path removed. Hence

τG(ek) = τ(G)− τ(G− ek)

=
n∏

i=1

ri

(
n∑

i=1

1

ri

)
−
∏
i 6=k

ri

∑
i 6=k

1

ri


=

n∏
i=1

ri

 n∑
i=1

1

ri
− 1

rk

∑
i 6=k

1

ri

 .

�

(We note in passing that when n = t and r1 = · · · = rt = m − 1, the generalized theta graph
obtained is the graph F (t) from [19], in which one result is a formula for τ(F (t)) obtained from a
complicated recursion. Theorem 3.7 generalizes that result, and in a much simpler fashion.)

Theorem 3.8. Let G = Θ(1, r2, . . . , rn), with

n∑
i=2

1

ri
=
q − p
p

.

Then dG(uv) = p/q.

Proof. Since r1 = 1, then by the previous theorem,

τ(G) =
n∏

i=2

ri

(
1 +

n∑
i=2

1

ri

)
and τG(uv) =

n∏
i=2

ri.
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Hence

dG(uv) =
τG(uv)

τ(G)
=

1

1 +
∑n

i=2
1
ri

=
1

1 + (q − p)/p
=
p

q

�

Since generalized theta graphs are clearly planar, we have the following.

Corollary 3.9. Let p, q be positive integers, p < q. Then there exists a planar graph G with edge
e such that dG(e) = p/q.

4. Constructing Dependencies

In this section we show that the construction of Theorem 3.3, the necklace graph N(K2,Kr2 , . . . ,
Krn) for specifically chosen r2, . . . , rn, can produce any desired dependence if the ri, 2 ≤ i ≤ n, are
chosen to be large enough. As before, the edge e1 (the only edge of the first constituent graph K2)
will carry the required dependence. We proceed by first establishing two lemmas, which consider
key edge densities and non-key edge densities of the graph respectively.

Lemma 4.1. Let G = N(G1, . . . , Gn) be a necklace graph with key edges ei ∈ E(Gi), 1 ≤ i ≤ n.
Then dG(ek) ≤ dG(e`) if and only if dGk

(ek) ≤ dG`
(e`).

Proof. Note that

(dGk
(ek)− dG`

(e`))

n∑
i=1

dGi(ei) ≤ (dGk
(ek)− dG`

(e`)) (dGk
(ek) + dG`

(e`))

if and only if dGk
(ek) ≤ dG`

(e`). The above is algebraically equivalent to

dGk
(ek)

(
1− dGk

(ek)∑n
i=1 dGi(ei)

)
≤ dG`

(e`)

(
1− dG`

(e`)∑n
i=1 dGi(ei)

)
which, by Theorem 2.2, says dG(ek) ≤ dG(e`). �

We divide non-key edges into two classes: those incident to the key vertices of their constituent
graphs, and those not incident to the key vertices of their constituent graphs. For brevity, we will
refer to these edges as type 1 and type 2 edges, respectively.

We will need the following result, due to Moon [14].

Theorem 4.2 ((Moon, [14])). Let F be a forest of Kr. Then if `(F ) denotes the number of
components of F , and if p(Fn) denotes the product of the number of vertices in the `(F ) components
of F , we have

τKr(F ) = p(F )n`(F )−2

where τKr(F ) denotes the number of trees of Kr that contain all of the edges of F .

In particular, note that if F = P3 ∪ (n− 3)K1, then τKr(F ) = 3rr−4, and if F = 2K2 ∪ (n− 4)K1,
then τKr(F ) = 4rr−4.

Lemma 4.3. Let G = N(K2,Kr2 , . . . ,Krn). If xy ∈ E(Krk) is a type 1 edge of G, then

τG(xy) =
n∏

i=1

rri−2i

(
4

rk

n∑
i=1

1

ri
− 1

r2k

)
.
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If xy ∈ E(Krk) is a type 2 edge of G, then

τG(xy) =

n∏
i=1

rri−2i

(
4

rk

n∑
i=1

1

ri

)
.

Consequently, type 1 edges of the necklace graph N(K2,Kr2 , . . . ,Krk) never carry the spanning tree
edge dependence of G.

Proof. Let xy ∈ E(Krk) be a non-key edge of G, with ukvk ∈ E(Krk) the corresponding key
edge. It is immediate that the same bijection as in Theorem 2.1 (adding/removing edge ukvk) is a
bijection between the spanning thickets of Krk that separate vertices uk, vk and also contain edge
xkyk, and the spanning trees of Krk which contain edges ukvk and xkyk. Hence bGk

(xkyk;uk, vk) =
τKrk

(ukvk, xkyk), and by Theorem 2.1,

τG(xkyk) =

n∏
i=1

τ(Kri)

τKrk
(xkyk, ukvk)

τ(Krk)
+ dKrk

(xkyk)
∑
i 6=k

dKri
(uivi)

 .

Now consider a type 1 edge of G, i.e., an edge ukxk ∈ E(Krk), with uk a key vertex of Krk

and xk 6= vk. By Moon’s Theorem 4.2, we have τKrk
(ukvk, ukxk) = 3rrk−4k . By Cayley’s formula,

τ(Kri) = rri−2i and, as in Theorem 3.3, dKri
(uivi) = 2/ri. We obtain

τG(ukxk) =

n∏
i=1

rri−2i

3rrk−4k

rrk−2k

+
2

rk

∑
i 6=k

2

ri


=

n∏
i=1

rri−2i

(
3

r2k
+

4

rk

(
n∑

i=1

1

ri
− 1

rk

))

=

n∏
i=1

rri−2i

(
4

rk

n∑
i=1

1

ri
− 1

r2k

)

Now consider a type 2 edge of G, i.e., an edge xkyk ∈ E(Krk), with xk, yk both distinct from key

vertices uk, vk. Now by Moon’s Theorem 4.2, we have τKrk
(ukvk, xkyk) = 4rrk−4k , and we obtain

τG(xkyk) =

n∏
i=1

rri−2i

4rrk−4k

rrk−2k

+
2

rk

∑
i 6=k

2

ri


=

n∏
i=1

rri−2i

(
4

r2k
+

4

rk

(
n∑

i=1

1

ri
− 1

rk

))

=

n∏
i=1

rri−2i

(
4

rk

n∑
i=1

1

ri

)

In particular, for any 2 ≤ k ≤ n, and for xk, yk distinct from key vertices uk, vk,

τG(xkyk)− τG(ukxk) =
1

r2k

(
n∏

i=1

rri−2i

)
> 0

and so the type 1 edges ukxk are contained in strictly fewer spanning trees than the type 2 edges
xkyk. �
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We are now ready to construct any rational edge dependence. By Lemma 3.1(b), condition (2)
in the following theorem may always be satisfied.

Theorem 4.4. Let p, q be positive integers, p < q, and let G = N(K2,Kr2 , . . . ,Krn) such that

(2)
n∑

i=2

1

ri
=

p

2(q − p)
and ri ≥

2(2q − p)
p

for all 2 ≤ i ≤ n. Then dep(G) = dG(e1) = p/q.

Proof. It is easy to see that p < q and condition (2) above insure that ri ≥ 2 > 1 for all 2 ≤ i ≤ n.
Thus by Theorem 3.3 we have dG(e1) = p/q. We now show that maxe∈E(G) dG(e) = dG(e1). By
Lemma 4.1 and the construction of G, we know that dG(e1) ≥ dG(ek) for any key edge ek, 2 ≤ k ≤ n.
And by Lemma 4.3 we know no type 1 edge carries the dependence. So we need only show that e1
is in more spanning trees of G than any type 2 edge of G. But for any type 2 edge xkyk ∈ E(Krk),
2 ≤ k ≤ n, we have, by Theorem 2.2 and Lemma 4.3,

τG(e1)− τG(xkyk) =

n∏
i=1

rri−2i

(
n∑

i=2

2

ri

)
−

n∏
i=1

rri−2i

(
4

rk

n∑
i=1

1

ri

)

=
n∏

i=1

rri−2i

[
2

n∑
i=2

1

ri
− 4

rk

(
1 +

n∑
i=2

1

ri

)]

=

(
n∏

i=1

rri−2i

)[
2

(
p

2(q − p)

)
− 4

rk

(
1 +

p

2(q − p)

)]

≥

(
n∏

i=1

rri−2i

)[
p

q − p
− 4

2(2q − p)/p

(
1 +

p

2(q − p)

)]
= 0.

So for any type 2 edge xkyk ∈ E(Krk), 2 ≤ k ≤ n, we see that τG(e1) ≥ τG(xkyk), implying
dG(e1) ≥ dG(xkyk) for any type 2 edge, which completes the proof. �

5. Conclusion and Open Questions

We conclude with two conjectures and two questions which stem from the bipartite and planar
constructions of Theorems 3.5 and 3.8. First we conjecture that the bipartite construction of
Theorem 3.5 can be made to carry the correct spanning tree edge dependence, similar to the way
the complete graph construction of Theorem 3.3 was in section 4.

Conjecture 1. Let p, q be positive integers, p < q. There exists some function f(p, q) such that,
if G is the bipartite construction of Theorem 3.5, then ti ≥ f(p, q) for all 2 ≤ i ≤ n implies that
dep(G) = dG(e1).

While it is possible that Conjecture 2 could be proved with less, obviously a bipartite version
of Moon’s theorem on spanning trees in complete graphs (Theorem 4.2) would be useful. To our
knowledge, no such result is known. Hence a more general question motivated by Theorem 3.5 is
the following.

Question 1. Is there a complete bipartite version of Theorem 4.2?

In contrast to the bipartite case, it is not difficult to see that in the generalized theta graph of
Theorem 3.8 the edge e = uv in fact carries the minimum, not maximum, density in G. At this
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time, we do not know if it is possible to produce arbitrary spanning tree edge dependencies via
planar graphs, although we conjecture it can be done.

Conjecture 2. Let p, q be positive integers, p < q. There exists a planar graph G such that
dep(G) = p/q.

The above conjecture raises a somewhat more general question, however. As mentioned in
the Introduction the resistance distance Ω(u, v) is equal to dG(uv) when u, v are adjacent in G.
However, Ω(u, v) is in fact a distance metric between any two vertices in a graph [10], not just
adjacent vertices. It is well-known that if u, v non-adjacent then

Ω(u, v) =
τG+uv(uv)

τ(G)
.

In analogy with spanning tree edge dependence, then, we define rd(G) = maxu,v∈V (G) Ω(u, v).
Let p/q be any positive rational number. (When vertices are not adjacent, the resistance distance

between those vertices can be greater than 1.) It is possible to construct a graph with rd(G) = p/q;
indeed a particular necklace graph “with the clasp removed” is such a construction. Specifically,
let G = N(K2,Kr2 , . . . ,Krp), with r2 = · · · = rp = 2q, and let G′ be equal to G with the edge of
K2, first constituent graph, removed. Note that adding any edge to G′ produces a graph whose
blocks are a necklace graph and/or cliques. Given this, it is straightforward (and left to the reader)
to verify that rd(G′) is achieved precisely when u, v are selected so that G′ + uv = G, and that
rd(G) = p/q.

Figure 2. A graph G′ with p = 6 and q = 2 and rd(G′) = p/q = 3.

The graph G given is clearly claw-free, and clearly not planar. Thus for rd(G) we are currently
in the same situation as with dep(G).

Question 2. Let p, q be positive integers, p < q. Is rd(G) = p/q constructible via planar graphs?

The question above is made more interesting by the fact that a large number of chemical graphs
are planar.
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