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Abstract

Let ω0(G) denote the number of odd components of a graph G. The
deficiency of G is defined as def(G) = maxX⊆V (G) (ω0(G−X)− |X|),
and this equals the number of vertices unmatched by any maximum
matching of G. A subset X ⊆ V (G) is called a Tutte set (or bar-
rier set) of G if def(G) = ω0(G − X) − |X|, and an extreme set if
def(G − X) = def(G) + |X|. Recently a graph operator, called the D-
graph D(G), was defined that has proven very useful in examining Tutte
sets and extreme sets of graphs which contain a perfect matching. In this
paper we give two natural and related generalizations of the D-graph op-
erator to all simple graphs, both of which have analogues for many of the
interesting and useful properties of the original.
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1 The D-graph of a graph with a perfect match-
ing

A good reference for any terms left undefined is [3]. We consider a simple graph
G. The deficiency of G is defined as

def(G) = max
X⊆V (G)

(ω0(G−X)− |X|)

where ω0(G−X) denotes the number of odd components of G−X. Equivalently,
and more intuitively, def(G) can be shown to be the number of vertices of G
unmatched by a maximum matching [4].

A Tutte set (also called a barrier set in [4]) of G is a subset X ⊆ V (G) such
that ω0(G − X) − |X| = def(G). A set of vertices X in V (G) is extreme if
def(G − X) = def(G) + |X|. In [1, 2], a new graph operator was introduced
to aid in the investigation of Tutte sets and extreme sets of graphs which had
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perfect matchings. Given a graph G with a perfect matching, the D-graph D(G)
is the graph whose vertex set and edge set are as follows:

1. V (D(G)) = V (G), and

2. xy ∈ E(D(G)) if and only if G− x− y has a perfect matching.

It is our goal in this paper to generalize the D-graph operator to facilitate
analysis of Tutte and extreme sets in arbitrary graphs.

In [1, 2], another equivalent definition of E(D(G)) was given. We require
the following notation. Let G be a graph, and let M denote some maximum
matching of G. By PM [x, y], we denote an M -alternating path in G which joins
vertices x and y, and which begins and ends with edges of M . In [4] it is shown
that, if M is a perfect matching, then G− x− y has a perfect matching if and
only if PM [x, y] exists, and that the existence of such a path is independent of
the choice of perfect matching M of G. We thus have the following equivalent
definition of xy ∈ E(D(G)).

Proposition 1.1. Let G be a graph with a perfect matching M . Then xy ∈
E(D(G)) if and only if there exists a path PM [x, y] in G.

This alternating path characterization of the edges of D(G) was used in [1]
to examine the structure of D-graphs. In [2], these structural results were used
to show that finding maximum Tutte sets is NP-hard for many classes of graphs
(triangle-free, 2-connected planar, k-connected for any k ≥ 2) and polynomial
in several others (elementary graphs, 1-tough graphs). It was also shown that
finding a maximal Tutte set can be accomplished in polynomial time.

The following four theorems summarize the main structural results from [1].

Theorem 1.2. Let G be a graph with a perfect matching, and let X ⊆ V (G).
Then X is an extreme set of G if and only if X is an independent set in D(G).

Since maximal extreme sets are also maximal Tutte sets [1], we have the
following equivalences.

Theorem 1.3. Let G be a graph with a perfect matching and let X ⊂ V (G).
The following are equivalent:

(i) X is a maximal Tutte set in G,

(ii) X is a maximal extreme set in G,

(iii) X is a maximal independent set in D(G).

Theorems 1.2 and 1.3 provide a new means to investigate Tutte and extreme
sets of graphs with perfect matchings.

Considered solely as a graph operator, the D-graph D(G) was also shown to
have interesting properties when iterated. First, the following was shown.

Theorem 1.4. Let G be a graph with a perfect matching. Then D(G) contains
an isomorphic copy of G.
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Now let Dk(G) denote the D-graph operator applied k times to the graph
G, e.g. D2(G) = D(D(G)) and so on. Since V (G) = V (D(G)), Theorem
1.4 implies that for some iteration we must have Dk+1(G) ∼= Dk(G), and that
this stability continues for any future iterations. A surprising discovery was
how quickly the D-graph operator converged, regardless of the structure of the
original graph G.

Theorem 1.5. Let G be a graph with a perfect matching. Then D3(G) ∼=
D2(G).

The minimum positive integer k such that Dk+1(G) ∼= Dk(G) is called the
level of G and is denoted level(G). Theorem 1.5 states that if G has a perfect
matching, then level(G) ≤ 2.

2 Generalized D-Graphs

The D-graph operator can be naturally generalized to all graphs in the following
manner.

Definition 2.1. Let G be a graph. We define D(G) as follows:

1. V (D(G)) = V (G), and

2. xy ∈ E(D(G)) if and only if def(G− x− y) ≤ def(G).

Note that G has a perfect matching if and only if def(G) = 0, and thus
the operator defined above is indeed a generalization of the operator of [1, 2].
Note also that under this definition the statement xy ∈ E(D(G)) is equivalent
to the statement that if M and M ′ are maximum matchings of G and G−x−y
respectively, then |M | ≤ |M ′|+ 1.

For graphs with def(G) ≥ 1, the properties of this generalized D-graph
operator closely parallel the properties shown in [1], as will be shown in this
section. In order to examine the behavior of D(G) we will utilize the Gallai-
Edmonds decomposition of the graph G. Given a graph G, define the following
sets of vertices:

A(G) = {x ∈ V (G) |x is unmatched by some maximum matching of G},

B(G) = {x ∈ V (G)−A(G) |x is adjacent to some vertex of A(G)},

C(G) = V (G)−A(G)−B(G).

When the graph G is apparent, we denote the Gallai-Edmonds decomposition
of G by simply A, B and C. In the rest of this paper, A, B and C will typically
indicate the decomposition of an arbitrary but fixed graph G upon which we
will be using the D-graph operator, and the Gallai-Edmonds decompositions of
the resulting graphs will be indicated with the parenthetical notation, e.g. the
set of vertices of D(G) which are unmatched by some maximum matching of
D(G) is A(D(G)), etc.
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A near-perfect matching of G is a matching which leaves only one vertex
unmatched, and a factor-critical graph is a graph in which G− x has a perfect
matching for all x ∈ V (G). The following facts about A(G), B(G), and C(G)
can be found in [4].

Theorem 2.2. Let G be a graph and A(G), B(G), and C(G) be the Gallai-
Edmonds decomposition of G. Then:

(a) the components of the subgraph induced by A(G) are factor-critical;

(b) the subgraph induced by C(G) has a perfect matching;

(c) if M is a maximum matching of G, then M consists of a near-perfect
matching of each component of A(G), a perfect matching of C(G), and a
matching of all vertices of B(G) with vertices in distinct components of
A(G);

(d) B is a Tutte set of G; in particular, def(G) = ω0(G[A])− |B|;

(e) a maximal Tutte set of G consists of B together with a maximal Tutte set
of G[C].

We will also need the following lemma from [4].

Lemma 2.3. (Stability Lemma) Let G be a graph and A, B and C be the
Gallai-Edmonds decomposition of G. Then:

(a) if x ∈ A(G), then A(G − x) ⊆ A(G) − x, B(G − x) ⊆ B(G) − x, and
C(G− x) ⊇ C(G)− x.

(b) if x ∈ B(G), then A(G − x) = A(G) − x, B(G − x) = B(G) − x and
C(G− x) = C(G)− x,

(c) if x ∈ C(G), then A(G − x) ⊇ A(G) − x, B(G − x) ⊇ B(G) − x, and
C(G− x) ⊆ C(G)− x,

The following lemma collects facts about edges of E(D(G)) that will prove
useful. For notational purposes, it will be convenient to abbreviate D(G) = D,
so for example the subgraph of D(G) induced by A(G) is indicated by D[A].

Lemma 2.4. Let G be a graph and A, B and C denote the Gallai-Edmonds
decomposition of G.

(a) If there is a maximum matching M such that PM [x, y] exists, then xy ∈
E(D(G)).

(b) If x ∈ A(G), then xy ∈ E(D(G)) for all y ∈ V (G).

(c) D[B] is independent,

(d) there are no edges between D[B] and D[C],
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(e) D(G[C]) = D[C].

Proof: (a) Let x′ and y′ denote the mates of x and y under M . Since
PM [x, y] exists, in G− x− y there exists a matching M ′ and a path PM ′ [x′, y′]
consisting of PM [x, y]− x− y with the alternations reversed. Now simply note
that |M ′| = |M | − 1, and thus def(G− x− y) ≤ def(G).

(b) Let x, y ∈ A, and so by definition there is some maximum matching M
of G that misses x. But M is also a maximum matching of G− x, so if M ′ is a
maximum matching of G− x− y, obviously |M ′| ≥ |M | − 1.

Let x ∈ A and y ∈ B, and let M be a maximum matching of G which misses
x. By the Stability Lemma, part (b), M ′ = M − y is a maximum matching of
G − y. Thus |M | = |M ′| + 1, and so def(G − y) = def(G) + 1. But since M
misses x, then def(G− x− y) = def(G− y)− 1 = def(G).

Now let x ∈ A and y ∈ C, and note that def(G − y) = def(G) + 1. But
by part (c) of the Stability Lemma x ∈ A(G − y) and so def(G − x − y) =
def(G− y)− 1 = def(G).

(c) If x, y ∈ B, and let M be a maximum matching of G. Then it follows
from part (b) of the Stability Lemma that M − x− y is a maximum matching
of G− x− y. It only remains to note that |M − x− y| = |M | − 2.

(d) Let x ∈ B, y ∈ C. By part (b) of the Stability Lemma it follows that
def(G−x) = def(G) + 1, and that y ∈ C(G−x). Thus no maximum matching
of G− x misses y and def(G− x− y) ≥ def(G− x) ≥ def(G) + 1.

(e) Let xy ∈ E(D(G[C])). Since G[C] has a perfect matching, this means
that some PM [x, y] exists. But by (a), this means that xy ∈ E(D[C]). Thus
D(G[C]) ⊆ D[C].

Now let xy ∈ E(D[C]), and assume that xy /∈ E(D(G[C])). By definition,
this means that def(G−x−y) ≤ def(G) and def(G[C]−x−y) = def(G[C])+2 =
2. Now let S be some Tutte set of G[C] − x − y, so that def(G[C] − x − y) =
ω0(G[C]− x− y − S)− |S|. Now we have

def(G− x− y) ≥ ω0(G− x− y − S −B)− |S| − |B|
= ω0(G[C]− x− y − S)− |S|+ ω0(G[A])− |B|
= def(G[C]− x− y) + def(G)
= 2 + def(G)
≥ 2 + def(G− x− y),

which is a contradiction, meaning we must have xy ∈ E(D(G[C])). Thus D[C] ⊆
D(G[C]), and so D[C] = D(G[C]) as claimed. �

Part (a) of the previous lemma differs from Proposition 1.1 in that it gives
only a sufficient condition for the existence of an edge of D(G). Necessity
also follows in the case that G has a perfect matching but not in general, a
fact demonstrated by the following example. Let G be any graph which has a
perfect matching. For any vertex v in G, let H denote the graph with vertex
set V (G) ∪ {x} ∪ {y} and edge set E(G) ∪ {xv} ∪ {yv}. It is straightforward
to see that H does not have a perfect matching and that xy ∈ E(D(H)), but
there is no maximum matching M of H such that PM [x, y] exists.
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We now give the properties of the generalized D-graph operator analogous
to Theorems 1.2 through 1.5. We consider first the iterative behavior of the
operator.

Theorem 2.5. Let G be a graph. Then D(G) contains an isomorphic copy of
G.

Proof: We need only consider graphs which do not have a perfect matching.
Let G be such a graph, let M be any maximum matching of G, and let AM ⊆ A
be the vertices of G unmatched by M . Now observe the following:

(a) D[G−AM ] contains an isomorphic copy of D(G−AM );

(b) D[A] is a clique; and

(c) D(G) contains the join of A and B ∪ C.

The second and third follow directly from Lemma 2.4(b) so we consider
statement (a). M is a perfect matching in G−AM , so an edge xy ∈ E(D(G−
AM )) occurs if and only if a path PM [x, y] exists in G − AM . However, by
Lemma 2.4 this path guarantees the existence of xy ∈ D(G), and thus xy ∈
E(D[G − AM ]). The theorem is now an immediate consequence of (a)-(c) and
Theorem 1.4. �

Theorem 2.6. For any graph G on n vertices, D3(G) ∼= D2(G). In fact if G
does not have a perfect matching, then D2(G) = Kn.

Proof: Again we need only consider the case where G does not have a
perfect matching. Let M be a maximum matching of G and AM be the set of
vertices unmatched by M . As in the proof of Theorem 2.5, D[G − AM ] has a
perfect matching, D[A] is a clique, and all possible edges exist between D[A]
and D[B ∪ C]. We distinguish two cases:

Case 1 : |AM | = 1. Then M is a maximum matching of D. Let x, y ∈ V (D).
Now if x ∈ AM then by Lemma 2.4 we have xy ∈ E(D2(G)). So we may assume
that both x, y ∈ V (D)−AM . Now PM [x, y] = xx′zy′y exists, where AM = {z}
and x′, y′ are the mates of x, y respectively under M . Hence xy ∈ E(D2(G)).

Case 2 : |AM | > 1. Then one maximum matching M ′ of D consists of M
together with a maximum matching of the clique D[AM ]. Let x, y ∈ V (D). If
either x or y is in AM , then Lemma 2.4 again gives xy ∈ E(D2(G)). So we may
assume that both x, y ∈ V (G) − AM . Now PM ′ [x, y] = xx′zz′y′y exists, where
z ∈ AM and x′, y′, z′ are the mates of x, y, z under M ′ respectively. Hence
xy ∈ E(D2(G)).

In both cases xy ∈ E(D2(G)), and so D2(G) = Kn as required. �
Now we proceed to demonstrate that the D(G) operator possesses properties

concerning Tutte and extreme sets of general graphs similar to the properties it
possesses in graphs with perfect matchings.

Theorem 2.7. Let G be a graph and let X ⊆ V (G) with |X| > 1. Then X is
an extreme set of G if and only if X is an independent set of D(G).
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Proof: (⇒) Let X be an extreme set in G, and thus def(G−X)− |X| =
def(G). Say vertices a, b ∈ X are not independent in D(G) and so by definition
of E(D(G)) we have def(G− a− b) ≤ def(G). By Lemma 3.3.1 of [4], we have
def(G − S) ≤ def(G) + |S| for any S ⊆ V (G); in particular, def(G − X) =
def(G− a− b− (X − a− b)) ≤ def(G− a− b) + |X| − 2. But now we have

def(G) = def(G−X)− |X|
≤ def(G− a− b) + |X| − 2− |X|
= def(G− a− b)− 2
≤ def(G)− 2,

which is a contradiction.
(⇐) If X ′ is an extreme set then it is easily verified [4] that any subset

X ⊆ X ′ is also an extreme set, and so we need only show the theorem true for a
maximal independent set of D(G). In [1] it is shown that any maximal extreme
set is also a maximal Tutte set, so it suffices to show that a maximal independent
set X of D(G) is also a maximal Tutte set of G. Finally by Theorem 2.2(e), this
is equivalent to showing that X is equal to B together with a maximal Tutte
set of G[C].

Let X be a maximal independent set of D(G). Since |X| > 1 by Lemma 2.4
no vertex of A is an element of X, and so X is a maximal independent set of
D[B ∪ C]. By Lemma 2.4(c), B is a set of isolated vertices in D[B ∪ C]. Thus
X consists of B together with a maximal independent set of D[C], and it only
remains to show that a maximal independent set of D[C] is a maximal Tutte set
of G[C]. But by Lemma 2.4(e), D(G[C]) = D[C] and any maximal independent
set of D[C] is also a maximal independent set of D(G[C]). Since G[C] has a
perfect matching, a maximal independent set of D[C] is also a maximal Tutte
set of G[C], and the proof is complete. �

Corollary 2.8. Let G be a graph and let X be a subset of V (G) with |X| > 1.
The following are equivalent:

(i) X is a maximal Tutte set in G,

(ii) X is a maximal extreme set in G,

(iii) X is a maximal independent set in D(G).

The result above is the best possible for general graphs in the following sense.
The condition that all singleton vertices are extreme (or Tutte) characterizes
those graphs which have a perfect matching [5]. Thus, if a graph does not have
a perfect matching then we are guaranteed that some set X with |X| = 1 is
neither extreme nor Tutte. Hence, the |X| > 1 condition is necessary when
considering arbitrary graphs.
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3 D∗-Graphs

In this section, we introduce a second generalization of the original D-graph
operator on graphs with perfect matchings.

Definition 3.1. Let G be a graph. We define the D∗-graph D∗(G) as follows:

1. V (D∗(G)) = V (G), and

2. (x, y) ∈ E(D∗(G)) if and only if def(G− x− y) = def(G).

We note two immediate facts. First, when G does not possess a perfect
matching, then D∗(G) is a subgraph of D(G). Second, note that under this
definition xy ∈ E(D(G)) is equivalent to saying that if M and M ′ are maximum
matchings in G and G− x− y respectively, then |M | = |M ′|+ 1.

Despite the relationships just mentioned between D∗(G) and D(G), the be-
havior of the D∗-graph operator is in many ways markedly different than that of
the D-graph operator. For example, under the D∗-graph operator the existence
of an M -alternating path PM [x, y] no longer guarantees an edge xy ∈ E(D∗(G)).
The alternating path condition is valid only for the smallest deficiencies.

Theorem 3.2. Let G be a graph with def(G) ≤ 1. If there is a maximum
matching M such that PM [x, y] exists, then xy ∈ E(D∗(G)).

Proof: We need only consider the case def(G) = 1. Let x, y ∈ V (G) be
such that PM [x, y] exists. Note that |V (G)| is odd, and thus def(G−x−y) ≥ 1.
After reversing the alternations of the path PM [x, y], we obtain a matching M ′

of G−x−y of cardinality |M ′| = |M |−1, and so def(G−x−y) ≤ def(G) = 1.
Thus def(G− x− y) = def(G) = 1. �

To see that the condition def(G) ≤ 1 is necessary, take any graph H with a
perfect matching M , let ab ∈M , and form G by appending two pendant vertices
each to both a and b. Denoting one pendant vertex of a by x and one pendant
vertex of b by y, we see that a maximum matching of G is M ′ = M−ab+ax+by,
and thus that PM ′ [x, y] exists. However def(G) = 2 and def(G−x−y) = 0, and
xy /∈ E(D∗(G)). The example can accommodate graphs of higher deficiency by
simply appending additional pendant edges to either a or b.

Another difference between D∗(G) and D(G) is that it is no longer the case
that D∗(G) must contain an isomorphic copy of G. Consider G = H + I, the
join of any nonempty, n-vertex graph H to an independent set I of size at least
n + 2. In D∗(G) the edges of H disappear, and only the edges between H and
I remain, so D∗(G) is isomorphic to Kn,|I|, a proper subgraph of G.

Despite these differences, there is still a relationship between the Tutte sets
and extreme sets of G and the independent sets of D∗(G). In order to set out
this relationship, we make the following observations.

Lemma 3.3. Let G be a graph and let A, B and C denote the Gallai-Edmonds
decomposition of G. Then

(a) each component of D∗[A] is complete,
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(b) there is a complete bipartite join from D∗[A] to D∗[B ∪ C],

(c) D∗[B] is independent,

(d) there are no edges between D∗[B] and D∗[C],

(e) D(G[C]) = D∗[C],

Parts (c) and (d) follow immediately from the fact that they hold for D(G)
as well, and D∗(G) ⊆ D(G). The proofs of parts (b) and (e) are almost identical
to the proofs of parts (b) and (e) of Lemma 2.4 and so are omitted. All that
remains is to prove (a).

Proof of (a): Assume otherwise. Then D∗[A] contains an induced path
of length three. Let xyz be such a path, and observe that this implies that
def(G−x−y) = def(G−y−z) = def(G). Thus, any maximum matching of G
that includes y must leave both x and z unmatched. Let M be such a matching.
Similarly, every maximum matching that includes x leaves y unmatched. Let M ′

be a matching that includes x. If M ′ does not include z, then def(G−x− z) =
def(G) and xz ∈ E(D∗(G)). Otherwise, consider the symmetric difference
M∆M ′. It is well known that the components of the symmetric difference of
any two maximum matchings is the union of even alternating paths and even
alternating cycles (see for instance [6]), and so x and z must be end vertices
of distinct alternating paths in M∆M ′. Let Px be the alternating path of
M∆M ′ that ends at x, and let Mx = M∆Px. Clearly, this is a maximum
matching which includes x but not z, and hence def(G− x− z) = def(G). So
xz ∈ E(D∗(G)), contradicting our choice of x, y, z. �

We now have the following.

Theorem 3.4. Let G be a graph and let X ⊆ V (G) be an independent set of
D∗(G) with |X| > 1. Then either

(1) X is an extreme set of G, or

(2) X ⊆ A.

Proof: Comparing Lemmas 3.3 and 2.4 reveals that D[B∪C] = D∗[B∪C],
and a complete bipartite join exists between D∗[B ∪C] and D∗[A]. Thus D(G)
and D∗(G) differ only in the edges present within A, and the result follows. �

Corollary 3.5. Let G be a graph and let X ⊆ V (G) be a maximal independent
set of D∗(G) with |X| > 1. Then either

(1) X is a maximal extreme set and a maximal Tutte set of G, or

(2) X ⊆ A.
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4 Iterated D∗-Graphs

Given a graph G, we say that level∗(G) = i if i is the smallest nonnegative
integer such that Di+1

∗ (G) is isomorphic to Di
∗(G). While Theorem 2.6 shows

that level(G) ≤ 2 for all G, in this section we show that level∗(G) ≤ 4 and
characterize the level∗ 4 graphs in terms of their Gallai-Edmonds decomposition.

To this end we examine the possible maximum matchings of D∗(G) by con-
sidering the Gallai-Edmonds decomposition of G and Lemma 3.3. As with the
D(G) operator, for notational simplicity we often abbreviate D∗ = D∗(G).

In the case where ω0(D∗[A]) ≤ |B|+ |C|, the odd components of D∗[A] may
be matched near perfectly, leaving ω0(D∗[A]) unmatched vertices among them.
We will match these vertices with vertices in B∪C until we have exhausted the
remaining vertices from the odd components of D∗[A]. In the event that |B| >
ω0(D∗[A]), we will now match the remaining vertices of B to even components
of D∗[A] in pairs. In either case, considering that D∗[C] has a perfect matching
and the even components of D∗[A] are complete, we leave at most one vertex of
B ∪ C unmatched. Hence, in this case, def(D∗(G)) ≤ 1.

We now show that ω0(D∗[A]) ≤ |B|+ |C| implies that level∗(G) ≤ 3.

Theorem 4.1. Let G be a graph such that the Gallai-Edmonds decomposi-
tion of G obeys ω0(D∗[A]) ≤ |B| + |C|. Then level∗(G) ≤ 3. Furthermore, if
ω0(D∗[A]) < |B|+ |C| then D2

∗(G) is complete.

Proof: If def(D∗(G)) = 0, then D∗(G) has a perfect matching and from
previous results we know that level∗(D∗) ≤ 2 and thus level∗(G) ≤ 3. Identical
reasoning allows us to assume that ω0(D∗[A]) < |B|+|C|. We therefore examine
the structure of D2

∗(G) when ω0(D∗[A]) < |B|+ |C| and def(D∗(G)) = 1.
Under the D(G) operator every x ∈ A was adjacent to every y ∈ V (G),

a circumstance which is only true for the smallest deficiencies under the D∗
operator. The following proposition is immediate from the definition of A.

Proposition 4.2. Let G be a graph with def(G) = 1. If x ∈ A, then xy ∈
D∗(G) for all y ∈ V (G).

In the maximum matching of D∗(G) described previously, the lone un-
matched vertex belonged to B ∪ C. Since D∗(G) contains the join of A and
B ∪ C, it is easy to see that we may take this unmatched vertex to be any
vertex of B ∪ C, and so B ∪ C ⊆ A(D∗(G)). Since def(D∗(G)) = 1 we have
that D2

∗[B ∪C] is complete and that D2
∗ contains the join of A and B ∪C. We

need only determine what edges exist in D2
∗[A].

Let e denote a vertex in an even component of D∗[A]. Since there is an
unmatched vertex x ∈ B ∪ C under M , the matching M ′ = M − ee′ + e′x is
also a maximum matching, and so e ∈ A(D∗(G)). Thus by Proposition 4.2 each
of these vertices is joined to every vertex in D2

∗(G), and we need only consider
which edges exist between the odd components of D∗[A] in D2

∗(G).
Let a1 and a2 denote two vertices in odd components of D∗[A]. If a1 and a2

are in the same component of D∗[A] they are joined in D2
∗(G), so assume that
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they lie in different components. If |C| > 0, then there exists at least one edge,
say between c1, c2 ∈ C, that is not a part of a maximum matching of D∗(G).
We may assume that in a maximum matching M of D∗(G), the mates of a1, a2

are a′1 = c1 and a′2 = c2 respectively, and thus the M -alternating path a1c1c2a2

path exists, and by Theorem 3.2 we have a1a2 ∈ E(D2
∗(G)).

Now assume |C| = 0. If there are any vertices e, e′ of an even component of
D∗[A], then the M -alternating path a1a

′
1ee
′a′2a2 exists. Furthermore, if any odd

components have more than three vertices, then the path a1a
′
1dd′a′2a2 exists,

where d, d′ are two vertices of that odd component. In both circumstances the
edge a1a2 ∈ E(D2

∗(G)). Finally if |C| = 0 and the only components of D∗[A] are
singletons, then |A| = ω0(D∗[A]) < |B|, an impossibility if the original graph G
did not have a perfect matching.

We see that if G satisfies ω0(D∗[A]) ≤ |B| + |C| then either D∗(G) has a
perfect matching or else D2

∗(G) is complete. In particular, level∗(G) ≤ 3. �
Now we examine the case when ω0(D∗[A]) > |B|+|C|. In this case, as D∗(G)

contains the join of A and B∪C, we can match one vertex in each odd component
of D∗[A] with a vertex in B∪C, leaving def(D∗(G)) = ω0(D∗[A])−|B|−|C| > 0
vertices unmatched. We will now investigate the level∗ of graphs of this type.
The case when def(D∗(G)) = 1 is handled separately.

Theorem 4.3. When ω0(D∗[A]) > |B| + |C| and def(D∗(G)) = 1, then
D3
∗(G) = Kn and level∗(G) = 3.

Proof: Recall that A(D∗(G)) = F , B(D∗(G)) = B∪C, and C(D∗(G)) = E
where E and F denote the vertices of the even and odd components of D∗[A]
respectively, and also that the unmatched vertices belong to the odd components
of D∗[A]. By Lemma 3.3(b-e) we have that a bipartite join exists between F
and B∪C∪E in D2

∗(G), that B∪C is independent in D2
∗(G), that no edges exist

between B ∪ C and E, and that D2
∗[E] = D∗[E]. It only remains to establish

what edges exist within D2
∗[F ]. However, by Proposition 4.2 from the previous

case if x ∈ D∗[F ] = F = A(D∗(G)) then x is connected to every other vertex in
D2
∗(G).

The structure of D2
∗(G) is now determined: the independent vertices of B∪C

and the complete even components D∗[E] are joined to Kf , where f = |F |. We
examine three maximum matchings of interest. One maximum matching, call
it M1, induces a perfect matching in E, matches B ∪ C to F , and finally takes
a near-perfect matching in the remaining portion of the Kf . One unmatched
vertex remains in F , and thus F ⊆ A(D2

∗(G)). Alternatively, we may form
a second maximum matching M2 by matching this unmatched vertex with a
vertex of F , leaving a vertex of B ∪ C unmatched. Thus B ∪ C ⊆ A(D2

∗(G)).
Alternatively, working again with M1, we can match the unmatched vertex of F
with a vertex of E, leaving a vertex of E unmatched. This matching M3 shows
that E ⊆ A(D2

∗(G)). We conclude that A(D2
∗(G)) = V (G), and so D3

∗(G) = Kn.
�

Theorem 4.4. Let G be a graph with def(D∗(G)) ≥ 2. Then level∗(G) ≤ 4,
with equality if and only if one of the following two conditions holds:
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(1) |B|+ |C|+ |E|+ 1 = ω0(D∗[A]), or

(2) |B|+ |C|+ |E| = ω0(D∗[A]) and ω0(D∗[A]) < |F |.

Proof: The only cases remaining occur when ω0(D∗[A]) > |B| + |C| and
def(D∗(G)) ≥ 2. Since A(D∗(G)), B(D∗(G)), and C(D∗(G)) are unchanged
from the def(D∗(G)) = 1 case, everything follows exactly as in the previous
proof except for the determination of what edges exist in D2

∗[F ]. Obviously if
x, y ∈ F are in the same component of D∗[F ], then they are adjacent in D2

∗(G).
But if x ∈ Fx, y ∈ Fy where Fx, Fy are distinct components of D∗[F ], then since
def(D∗(G)) ≥ 2 and a complete bipartite join exists in D∗(G) between A ⊇ F
and B by Lemma 3.3, it is easy to see that a maximum matching exists that
misses both x and y. Hence D2

∗[F ] = D∗[F ].
The analysis of D3

∗(G) now breaks down into the following cases.
Case I: ω0(D2

∗[F ]) ≥ |B| + |C| + |E| + 2. Here a maximum matching in
D2
∗(G) matches each of the vertices of B ∪ C ∪ E to a distinct component of

D2
∗[F ] = D∗[F ] together with a maximum matching in the remaining vertices of

A(D2
∗(G)) = F . Thus A(D2

∗(G)) = F and B(D2
∗(G)) = B∪C∪E. Using Lemma

3.3 we see that B∪C∪E is independent in D3
∗(G) and a complete bipartite join

exists between B∪C ∪E and F . Within F , analysis similar to that done earlier
in this proof shows that D3

∗[F ] = D2
∗[F ] = D∗[F ]. In D3

∗(G) we see again that
A(D2

∗(G)) = F and B(D2
∗(G)) = B ∪ C ∪ E, and that D4

∗[F ] = D3
∗[F ]. Thus

D4
∗(G) = D3

∗(G) and level∗(G) ≤ 3.
Case II: ω0(D2

∗[F ]) = |B|+ |C|+ |E|+ 1. A maximum matching in D2
∗(G)

is formed exactly as in the previous case, only now def(D2
∗(G)) = 1. In this

case, we note that level∗(D∗(G)) = 3 by Theorem 4.3, and hence level∗(G) = 4.
Case III: ω0(D2

∗[F ]) = |B|+ |C|+ |E|. The maximum matching described
in the two previous cases is here a perfect matching, and so by Theorem 1.5, we
have level(D2

∗(G)) = level∗(D2
∗(G)) ≤ 2, and so level∗(G) ≤ 4. Additionally,

we note that when |F | = ω0(D∗[F ]) = f , then f = n
2 , and D4

∗(G) = D3
∗(G) =

Kf,f and level∗(G) ≤ 3. Otherwise, we have |F | = f > n
2 , and in this case

D3
∗(G) = Kf ∧Kn−f and D4

∗(G) = Kn and level∗(G) = 4.
Case IV: ω0(D2

∗[F ]) < |B| + |C| + |E| = |B(D∗(G))| + |C(D∗(G))|. Then
by Theorem 4.1, we have D2

∗(D∗(G)) is complete and so level∗(D∗(G)) ≤ 2 and
level∗(G) ≤ 3.

The theorem statement is obtained by observing that by definition ω0(D∗[A]) =
ω0(D∗[F ]) and that in all cases D∗[F ] = D2

∗[F ]. �
Finally we provide examples of each type of level∗ 4 graphs. Let Tj denote a

triangle with 3j + 4 pendant vertices appended to one vertex. Then Tj ∪ jK1,2

is an example of the first type, while Tj ∪ jK1,2 ∪ K2,3 is an example of the
second type.

5 Open Problems

Two natural problems come to mind in regard to D-graphs and D∗-graphs.
First, is there a natural characterization of D-graphs? In other words, when is
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a graph H a D-graph or D∗-graph, i.e. when is H = D(G) or H = D∗(G) for
some G? At the moment it appears difficult to determine even what form such a
characterization would take. For example we mention that no characterization
is possible in terms of forbidden subgraphs. To see this take any proposed
forbidden subgraph H and create the graph H ′ by appending to each vertex
v ∈ V (G) a new pendant vertex v′. The graph H ′ has a perfect matching and
it is not difficult to see that D(H ′) = D∗(H ′) = H ′. In particular, the original
graph H is an induced subgraph of D(H ′).

Finally, now that D-graphs and D∗-graphs are defined for any graph G, is
it possible to characterize the D-graphs or D∗-graphs of various special classes
of graphs? By Theorems 2.7 and 3.4 and Corollaries 2.8 and 3.5, such a char-
acterization would yield information about the Tutte sets and extreme sets of
those graph classes.

The authors would like to thank the anonymous referees for many helpful
comments which improved the exposition of this paper, and in particular for
providing the argument used in the proof of Lemma 3.3(a).
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